March  2007, 7(2): 399-424. doi: 10.3934/dcdsb.2007.7.399

Qualitative behavior of a family of delay-differential models of the Glucose-Insulin system

1. 

CNR-IASI, BioMatLab, UCSC - Largo A., Gemelli 8, 00168 Roma, Italy

2. 

Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti", Consiglio Nazionale delle Ricerche (IASI-CNR), BioMatLab - UCSC - Largo A. Gemelli 8, 00168 Roma, Italy, Italy

Received  February 2006 Revised  November 2006 Published  December 2006

A family of delay-differential models of the glucose-insulin system is introduced, whose members represent adequately the Intra-Venous Glucose Tolerance Test and allied experimental procedures of diabetological interest. All the models in the family admit positive bounded unique solutions for any positive initial condition and are persistent. The models agree with the physics underlying the experiments, and they all present a unique positive equilibrium point.
   Local stability is investigated in a pair of interesting member models: one, a discrete-delays differential system; the other, a distributed-delay system reducing to an ordinary differential system evolving on a suitably defined extended state space. In both cases conditions are given on the physical parameters in order to ensure the local asymptotic stability of the equilibrium point. These conditions are always satisfied, given the actual parameter estimates obtained experimentally. A study of the global stability properties is performed, but while from simulations it could be conjectured that the models considered are globally asymptotically stable, sufficient stability criteria, formally derived, are not actually satisfied for physiological parameters values. Given the practical importance of the models studied, further analytical work may be of interest to conclusively characterize their behavior.
Citation: Pasquale Palumbo, Simona Panunzi, Andrea De Gaetano. Qualitative behavior of a family of delay-differential models of the Glucose-Insulin system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 399-424. doi: 10.3934/dcdsb.2007.7.399
[1]

Jiaxu Li, Yang Kuang, Bingtuan Li. Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 103-124. doi: 10.3934/dcdsb.2001.1.103

[2]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[3]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Martin Bohner, Osman Tunç. Qualitative analysis of integro-differential equations with variable retardation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021059

[6]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[7]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[8]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[9]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[10]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021051

[11]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[12]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[13]

Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047

[14]

Thanh-Anh Nguyen, Dinh-Ke Tran, Nhu-Quan Nguyen. Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3637-3654. doi: 10.3934/dcdsb.2016114

[15]

Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077

[16]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[17]

Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021058

[18]

Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379

[19]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[20]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (211)
  • HTML views (0)
  • Cited by (27)

[Back to Top]