-
Previous Article
On shock waves in solids
- DCDS-B Home
- This Issue
-
Next Article
Challenges of climate modeling
Stretching of heated threads with temperature-dependent viscosity: Asymptotic analysis
1. | Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom |
2. | Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China |
3. | Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3J 1P3 |
4. | Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States |
[1] |
M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41 |
[2] |
Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic and Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51 |
[3] |
Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier. A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Networks and Heterogeneous Media, 2020, 15 (2) : 215-245. doi: 10.3934/nhm.2020010 |
[4] |
Nurul Hafizah Zainal Abidin, Nor Fadzillah Mohd Mokhtar, Zanariah Abdul Majid. Onset of Benard-Marangoni instabilities in a double diffusive binary fluid layer with temperature-dependent viscosity. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 413-421. doi: 10.3934/naco.2019040 |
[5] |
Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012 |
[6] |
Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852 |
[7] |
Chaoying Li, Xiaojing Xu, Zhuan Ye. On long-time asymptotic behavior for solutions to 2D temperature-dependent tropical climate model. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1535-1568. doi: 10.3934/dcds.2021163 |
[8] |
Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5 (4) : 783-812. doi: 10.3934/nhm.2010.5.783 |
[9] |
Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353 |
[10] |
Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233 |
[11] |
Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20 |
[12] |
Takeshi Fukao, Nobuyuki Kenmochi. A thermohydraulics model with temperature dependent constraint on velocity fields. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 17-34. doi: 10.3934/dcdss.2014.7.17 |
[13] |
Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497 |
[14] |
József Z. Farkas, Gary T. Smith, Glenn F. Webb. A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1203-1224. doi: 10.3934/mbe.2018055 |
[15] |
M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure and Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805 |
[16] |
Xiao-Dong Yang, Roderick V. N. Melnik. Accounting for the effect of internal viscosity in dumbbell models for polymeric fluids and relaxation of DNA. Conference Publications, 2007, 2007 (Special) : 1052-1060. doi: 10.3934/proc.2007.2007.1052 |
[17] |
Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093 |
[18] |
Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001 |
[19] |
Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021043 |
[20] |
Tomáš Roubíček. From quasi-incompressible to semi-compressible fluids. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4069-4092. doi: 10.3934/dcdss.2020414 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]