June  2007, 7(4): 755-778. doi: 10.3934/dcdsb.2007.7.755

On the uncertainty of the minimal distance between two confocal Keplerian orbits

1. 

Dipartimento di Matematica, Universitá di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, Italy

Received  February 2006 Revised  January 2007 Published  March 2007

We introduce a regularization for the minimal distance maps, giving the locally minimal values of the distance between two points on two confocal Keplerian orbits. This allows to define a meaningful uncertainty for the minimal distance also when orbit crossings are possible, and it is useful to detect the possibility of collisions or close approaches between two celestial bodies moving approximatively on these orbits, with important consequences in the study of their dynamics. An application to the orbit of a recently discovered near-Earth asteroid is also given.
Citation: Giovanni F. Gronchi, Giacomo Tommei. On the uncertainty of the minimal distance between two confocal Keplerian orbits. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 755-778. doi: 10.3934/dcdsb.2007.7.755
[1]

Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147

[2]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[3]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[4]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[5]

Yair Daon, Georg Stadler. Mitigating the influence of the boundary on PDE-based covariance operators. Inverse Problems and Imaging, 2018, 12 (5) : 1083-1102. doi: 10.3934/ipi.2018045

[6]

José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921

[7]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[8]

Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations and Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007

[9]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[10]

Stefano Galatolo. Orbit complexity and data compression. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[11]

Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[12]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[13]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[14]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[15]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[16]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[17]

Wade Hindes. Orbit counting in polarized dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 189-210. doi: 10.3934/dcds.2021112

[18]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[19]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[20]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control and Related Fields, 2022, 12 (1) : 81-114. doi: 10.3934/mcrf.2021003

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]