June  2007, 7(4): 793-806. doi: 10.3934/dcdsb.2007.7.793

Stability and weak rotation limit of solitary waves of the Ostrovsky equation

1. 

Mathematics and Computer Science Department, College of the Holy Cross, Worcester, MA, 01610, United States

2. 

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-0408

Received  March 2006 Revised  January 2007 Published  March 2007

In this paper we study several aspects of solitary wave solutions of the Ostrovsky equation. Using variational methods, we show that as the rotation parameter goes to zero, ground state solitary waves of the Ostrovsky equation converge to solitary waves of the Korteweg-deVries equation. We also investigate the properties of the function $d(c)$ which determines the stability of the ground states. Using an important scaling identity, together with numerical approximations of the solitary waves, we are able to numerically approximate $d(c)$. These calculations suggest that $d$ is convex everywhere, and therefore all ground state solitary waves of the Ostrovsky equation are stable.
Citation: Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793
[1]

Fanzhi Chen, Michael Herrmann. KdV-like solitary waves in two-dimensional FPU-lattices. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2305-2332. doi: 10.3934/dcds.2018095

[2]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[3]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[4]

Guohua Zhang. Variational principles of pressure. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[5]

Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088

[6]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[7]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[8]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[9]

Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835

[10]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[11]

David Kinderlehrer, Michał Kowalczyk. The Janossy effect and hybrid variational principles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 153-176. doi: 10.3934/dcdsb.2009.11.153

[12]

Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019

[13]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[14]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[15]

José R. Quintero. Nonlinear stability of solitary waves for a 2-d Benney--Luke equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 203-218. doi: 10.3934/dcds.2005.13.203

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[17]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[18]

Orlando Lopes. A linearized instability result for solitary waves. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[19]

François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417

[20]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]