
Previous Article
Optimal investmentconsumption strategy in a discretetime model with regime switching
 DCDSB Home
 This Issue

Next Article
A linearquadratic control problem with discretionary stopping
Stability enhancement of a 2D linear NavierStokes channel flow by a 2D, wallnormal boundary controller
1.  Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, VA 22904 
[1] 
Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged NavierStokes (LANS$\alpha$) equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 123. doi: 10.3934/cpaa.2004.3.1 
[2] 
Rafael Vázquez, Emmanuel Trélat, JeanMichel Coron. Control for fast and stable LaminartoHighReynoldsNumbers transfer in a 2D NavierStokes channel flow. Discrete and Continuous Dynamical Systems  B, 2008, 10 (4) : 925956. doi: 10.3934/dcdsb.2008.10.925 
[3] 
Jie Liao, XiaoPing Wang. Stability of an efficient NavierStokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems  B, 2012, 17 (1) : 153171. doi: 10.3934/dcdsb.2012.17.153 
[4] 
Imam Wijaya, Hirofumi Notsu. Stability estimates and a LagrangeGalerkin scheme for a NavierStokes type model of flow in nonhomogeneous porous media. Discrete and Continuous Dynamical Systems  S, 2021, 14 (3) : 11971212. doi: 10.3934/dcdss.2020234 
[5] 
Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible NavierStokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 45794596. doi: 10.3934/dcds.2020193 
[6] 
Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for NavierStokes equations and application to inverse problems. Discrete and Continuous Dynamical Systems  B, 2016, 21 (8) : 23792407. doi: 10.3934/dcdsb.2016052 
[7] 
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2012, 17 (7) : 25952613. doi: 10.3934/dcdsb.2012.17.2595 
[8] 
LingBing He, Li Xu. On the compressible NavierStokes equations in the whole space: From nonisentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 34893530. doi: 10.3934/dcds.2021005 
[9] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[10] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 29672988. doi: 10.3934/dcdsb.2017149 
[11] 
Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navierStokes equation in its vorticity form for a twodimensional incompressible flow. Discrete and Continuous Dynamical Systems  B, 2006, 6 (4) : 651666. doi: 10.3934/dcdsb.2006.6.651 
[12] 
Shuguang Shao, Shu Wang, WenQing Xu, Bin Han. Global existence for the 2D NavierStokes flow in the exterior of a moving or rotating obstacle. Kinetic and Related Models, 2016, 9 (4) : 767776. doi: 10.3934/krm.2016015 
[13] 
Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by NavierStokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495516. doi: 10.3934/eect.2013.2.495 
[14] 
Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D NavierStokes equations from linear models. Discrete and Continuous Dynamical Systems  B, 2016, 21 (9) : 29272947. doi: 10.3934/dcdsb.2016080 
[15] 
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible NavierStokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409425. doi: 10.3934/krm.2010.3.409 
[16] 
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible NavierStokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469514. doi: 10.3934/krm.2016004 
[17] 
Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible NavierStokes equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 19912012. doi: 10.3934/cpaa.2009.8.1991 
[18] 
Yinnian He, Pengzhan Huang, Jian Li. H^{2}stability of some second order fully discrete schemes for the NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2019, 24 (6) : 27452780. doi: 10.3934/dcdsb.2018273 
[19] 
Chuong V. Tran, Theodore G. Shepherd, HanRu Cho. Stability of stationary solutions of the forced NavierStokes equations on the twotorus. Discrete and Continuous Dynamical Systems  B, 2002, 2 (4) : 483494. doi: 10.3934/dcdsb.2002.2.483 
[20] 
Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular graddiv stability methods for the timedependent NavierStokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 11911205. doi: 10.3934/era.2020065 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]