September  2007, 8(2): 369-387. doi: 10.3934/dcdsb.2007.8.369

Reformed post-processing Galerkin method for the Navier-Stokes equations

1. 

Faculty of Science, Xi'an Jiaotong University, Xi'an 710049

2. 

Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands

Received  September 2006 Revised  March 2007 Published  June 2007

In this article we compare the post-processing Galerkin (PPG) method with the reformed PPG method of integrating the two-dimensional Navier-Stokes equations in the case of non-smooth initial data $u_0 \epsilon\in H^1_0(\Omega)^2$ with div$u_0=0$ and $f,~f_t\in L^\infty(R^+;L^2(\Omega)^2)$. We give the global error estimates with $H^1$ and $L^2$-norm for these methods. Moreover, if the data $\nu$ and the $\lim_{t \rightarrow \infty}f(t)$ satisfy the uniqueness condition, the global error estimates with $H^1$ and $L^2$-norm are uniform in time $t$. The difference between the PPG method and the reformed PPG method is that their error bounds are of the same forms on the interval $[1,\infty)$ and the reformed PPG method has a better error bound than the PPG method on the interval $[0,1]$.
Citation: Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369
[1]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[2]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[3]

Hui Peng, Qilong Zhai. Weak Galerkin method for the Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021112

[4]

Yinnian He, Kaitai Li. Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 467-482. doi: 10.3934/dcds.1996.2.467

[5]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[6]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[7]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[8]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[9]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[10]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[11]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[12]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[13]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[14]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[15]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[17]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[18]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[19]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[20]

Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]