September  2007, 8(2): 435-454. doi: 10.3934/dcdsb.2007.8.435

A competition-diffusion system with a refuge

1. 

Department of Mathematics, University of Science and Technology of China, Hefei 230026, China, China

Received  October 2006 Revised  March 2007 Published  June 2007

In this paper, a model composed of two Lotka-Volterra patches is considered. The system consists of two competing species $X, Y$ and only species $Y$ can diffuse between patches. It is proved that the system has at most two positive equilibria and then that permanence implies global stability. Furthermore, to answer the question whether the refuge is effective to protect $Y$, the properties of positive equilibria and the dynamics of the system are studied when $X$ is a much stronger competitor.
Citation: Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435
[1]

Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and Stability of Time-Periodic Pyramidal Fronts for a Periodic Competition-Diffusion System. Communications on Pure & Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014

[2]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[3]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[4]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[5]

Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589

[6]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[7]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[8]

Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291

[9]

Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

[10]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[11]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[12]

Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233

[13]

E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323

[14]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[15]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[16]

Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555

[17]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[18]

M. Guedda, R. Kersner, M. Klincsik, E. Logak. Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1589-1600. doi: 10.3934/dcdsb.2014.19.1589

[19]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[20]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]