• Previous Article
    Some remarks on a singular reaction-diffusion system arising in predator-prey modeling
  • DCDS-B Home
  • This Issue
  • Next Article
    Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions
July  2007, 8(1): 45-60. doi: 10.3934/dcdsb.2007.8.45

An age and spatially structured model of tumor invasion with haptotaxis

1. 

Department of Mathematics, Mansfield College, Oxford University, Oxford, England

2. 

Depto. de Matemática Aplicada, E.T.S.I. Industriales, c. José Gutiérrez Abascal, 2, 28006 Madrid

3. 

Dipartimento di Matematica Pura e Applicata, Universita' di Padova, Padua

4. 

Mathematics Department, Vanderbilt University, Nashville, TN 37240, United States

Received  November 2006 Revised  December 2006 Published  April 2007

A model of tumor growth into surrounding tissue is analyzed. The model consists of a system of nonlinear partial differential equations for the populations of tumor cells, extracellular matrix macromolecules, oxygen concentration, and extracellular matrix degradative enzyme concentration. The spatial growth of the tumor involves the directed movement of tumor cells toward the extracellular matrix through haptotaxis. Cell age is used to track progression of cells through the cell cycle. The existence of unique global solutions is proved using the theory of fractional powers of analytic semigroup generators.
Citation: Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45
[1]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[2]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[5]

Elisabeth Logak, Chao Wang. The singular limit of a haptotaxis model with bistable growth. Communications on Pure and Applied Analysis, 2012, 11 (1) : 209-228. doi: 10.3934/cpaa.2012.11.209

[6]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[7]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[8]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[9]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[10]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[11]

Amy H. Lin. A model of tumor and lymphocyte interactions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 241-266. doi: 10.3934/dcdsb.2004.4.241

[12]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[13]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[14]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[15]

Jorge J. Betancor, Alejandro J. Castro, Marta De León-Contreras. Variation operators for semigroups associated with Fourier-Bessel expansions. Communications on Pure and Applied Analysis, 2022, 21 (1) : 239-273. doi: 10.3934/cpaa.2021176

[16]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[17]

Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 573-583. doi: 10.3934/mbe.2009.6.573

[18]

Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151

[19]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[20]

Rudolf Olach, Vincent Lučanský, Božena Dorociaková. The model of nutrients influence on the tumor growth. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2607-2619. doi: 10.3934/dcdsb.2021150

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (19)

[Back to Top]