    October  2007, 8(3): 557-567. doi: 10.3934/dcdsb.2007.8.557

## On the generalized pythagorean parameters and the applications in Banach spaces

 1 Department of Mathematics, Community College of Philadelphia, Philadelphia, PA 19130-3991, United States

Received  August 2006 Revised  January 2007 Published  July 2007

Let X be a Normed space and $S(X) = \{x \in X : \|\|x\|\| = 1\}$ be the unit sphere of X. Following the previous results for the Pythagorean approach in Banach spaces , , the generalized parameters $E_{\xi, \eta}(X)=$sup${\alpha_{\eta}(\xi x): x in S(X)\}$, $e_{\xi, \eta}(X)=$inf$\{\alpha_{\eta}(\xi x): x \in S(X)\}$, $F_{\xi, \eta}(X)=$sup${\beta_{\eta}(\xi x): x \in S(X)\}$, and $f_{\xi, \eta}(X)=$inf${\beta_{\eta}(\xi x): x \in S(X)\}$, where $\alpha_{\eta}(\xi x) =$sup${||\xi x + \eta y ||^2+ ||\xi x - \eta y ||^{2}: y \in S(X)\}$, $\beta_{\eta}(\xi x) =$inf${\|\|\xi x + \eta y ||^{2}+ ||\xi x - \eta y ||^{2}: y \in S(X)\}$ and $\xi, \eta > 0$ are defined and studied. The values of these parameters of some classical normed spaces are estimated and the relationship of these parameters with other geometric properties are investigated, and some existing results are extended also.
Citation: Ji Gao. On the generalized pythagorean parameters and the applications in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 557-567. doi: 10.3934/dcdsb.2007.8.557
  Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525  Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014  Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005  Baiyu Liu, Li Ma. Blow up threshold for a parabolic type equation involving space integral and variational structure. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2169-2183. doi: 10.3934/cpaa.2015.14.2169  Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445  George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417  Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure & Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031  Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623  Carlo Alabiso, Mario Casartelli. Quasi Normal modes in stochastic domains. Conference Publications, 2003, 2003 (Special) : 21-29. doi: 10.3934/proc.2003.2003.21  Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815  Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612  Dan Endres, Martin Kummer. Nonlinear normal modes for the isosceles DST. Conference Publications, 1998, 1998 (Special) : 231-241. doi: 10.3934/proc.1998.1998.231  Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65  Xingwu Chen, Weinian Zhang. Normal forms of planar switching systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6715-6736. doi: 10.3934/dcds.2016092  George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817  Alexey Cheskidov, Songsong Lu. The existence and the structure of uniform global attractors for nonautonomous Reaction-Diffusion systems without uniqueness. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 55-66. doi: 10.3934/dcdss.2009.2.55  Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227  Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663  Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363  A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

2018 Impact Factor: 1.008