This issuePrevious ArticleNumerical methods for stiff reaction-diffusion systemsNext ArticleThe gate to body capacitance of a MOSFET by asymptotic analysis
On the generalized pythagorean parameters and the applications in Banach spaces
Let X be a Normed space and $S(X) = \{x \in X : \|\|x\|\| = 1\}$ be the
unit sphere of X. Following the previous results for the Pythagorean
approach in Banach spaces [5], [6], the generalized
parameters $E_{\xi, \eta}(X)=$sup${\alpha_{\eta}(\xi x): x in
S(X)\}$, $e_{\xi, \eta}(X)=$inf$\{\alpha_{\eta}(\xi x): x \in S(X)\}$,
$F_{\xi, \eta}(X)=$sup${\beta_{\eta}(\xi x): x \in S(X)\}$, and
$f_{\xi, \eta}(X)=$inf${\beta_{\eta}(\xi x): x \in S(X)\}$, where
$\alpha_{\eta}(\xi x) =$sup${||\xi x + \eta y ||^2+ ||\xi x - \eta
y ||^{2}: y \in S(X)\}$, $\beta_{\eta}(\xi x) =$inf${\|\|\xi x + \eta
y ||^{2}+ ||\xi x - \eta y ||^{2}: y \in S(X)\}$ and $\xi, \eta > 0$
are defined and studied. The values of these parameters of some
classical normed spaces are estimated and the relationship of these
parameters with other geometric properties are investigated, and
some existing results are extended also.