Advanced Search
Article Contents
Article Contents

Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator

Abstract Related Papers Cited by
  • In this paper we consider the equation $\ddot x+x=\sin(\sqrt{2}t)+s(x)\,$ where $s(x)$ is a piece-wise linear map given by min$\{5x,1\}$ if $x\ge0$ and by max$\{-1, 5x\}$ if $x<0$. The existence of chaotic behaviour in the Smale sense inside the instability area is proven. In particular transversal homoclinic fixed point is found. The results follow from the application of topological degree theory the computer-assisted verification of a set of inequalities. Usually such proofs can not be verified by hands due to vast amount of computations, but the simplicity of our system leads to a small set of inequalities that can be verified by hand.
    Mathematics Subject Classification: Primary: 34C28; Secondary: 37D45.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint