July  2008, 10(1): 109-128. doi: 10.3934/dcdsb.2008.10.109

An investigation of the global properties of a two-dimensional competing species model

1. 

Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland, Ireland

Received  July 2007 Revised  December 2007 Published  April 2008

In this paper we demonstrate how the global dynamics of a biological model can be analysed. In particular, as an example, we consider a competing species population model based on the discretisation of the original Lotka-Volterra equations. We analyse the local and global dynamic properties of the resulting two-dimensional noninvertible dynamical system in the cases when the interspecific competition is considered to be “weak”, “strong” and “mixed”. The main results of this paper are derived from the study of some global bifurcations that change the structure of the attractors and their basins. These bifurcations are investigated by the use of critical curves, a powerful tool for the analysis of the global properties of noninvertible two-dimensional maps.
Citation: Patrick J. Johnson, Mark E. Burke. An investigation of the global properties of a two-dimensional competing species model. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 109-128. doi: 10.3934/dcdsb.2008.10.109
[1]

Evelyn Sander. Hyperbolic sets for noninvertible maps and relations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 339-357. doi: 10.3934/dcds.1999.5.339

[2]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[3]

Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219

[4]

Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetry-breaking bifurcations of critical orbits of invariant functionals. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2005-2017. doi: 10.3934/dcdss.2019129

[5]

Eugen Mihailescu. Unstable manifolds and Hölder structures associated with noninvertible maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 419-446. doi: 10.3934/dcds.2006.14.419

[6]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[7]

Linda J. S. Allen, Vrushali A. Bokil. Stochastic models for competing species with a shared pathogen. Mathematical Biosciences & Engineering, 2012, 9 (3) : 461-485. doi: 10.3934/mbe.2012.9.461

[8]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[9]

Rafael Bravo De La Parra, Luis Sanz. A discrete model of competing species sharing a parasite. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019204

[10]

Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133

[11]

Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259

[12]

Julián López-Gómez. On the structure of the permanence region for competing species models with general diffusivities and transport effects. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 525-542. doi: 10.3934/dcds.1996.2.525

[13]

Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

[14]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[15]

Atsushi Yagi. Exponential attractors for competing species model with cross-diffusions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1091-1120. doi: 10.3934/dcds.2008.22.1091

[16]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[17]

Zhiguo Wang, Hua Nie, Jianhua Wu. Spatial propagation for a parabolic system with multiple species competing for single resource. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1785-1814. doi: 10.3934/dcdsb.2018237

[18]

Thorsten Hüls. A model function for non-autonomous bifurcations of maps. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 351-363. doi: 10.3934/dcdsb.2007.7.351

[19]

Yunfeng Jia, Jianhua Wu, Hong-Kun Xu. On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1927-1941. doi: 10.3934/cpaa.2013.12.1927

[20]

Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure & Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]