Advanced Search
Article Contents
Article Contents

Non-integrability of some hamiltonians with rational potentials

Abstract Related Papers Cited by
  • In this paper we give a mechanism to compute the families of clas- sical hamiltonians of two degrees of freedom with an invariant plane and normal variational equations of Hill-Schrödinger type selected in a suitable way. In particular we deeply study the case of these equations with polynomial or trigonometrical potentials, analyzing their integrability in the Picard-Vessiot sense using Kovacic’s algorithm and introducing an algebraic method (algebrization) that transforms equations with transcendental coefficients in equations with rational coefficients without changing the Galoisian structure of the equation. We compute all Galois groups of Hill-Schrödinger type equations with polynomial and trigonometric (Mathieu equation) potentials, obtaining Galoisian obstructions to integrability of hamiltonian systems by means of meromorphic or rational first integrals via Morales-Ramis theory.
    Mathematics Subject Classification: Primary: 37J30, 12H05; Secondary: 70H07.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint