September  2008, 10(2&3, September): 439-454. doi: 10.3934/dcdsb.2008.10.439

Global dynamics in a self--consistent model of elliptical galaxy

1. 

Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata, Argentina

2. 

Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata, Paseo del Bosque S/N, B1900FWA La Plata, Argentina, Argentina

Received  October 2006 Revised  July 2007 Published  June 2008

In the present paper we study the global dynamics corresponding to a realistic model of self-consistent triaxial galactic system. We extend a previous work [17] where the authors investigate 3,472 orbits in this model at different energy levels, using Lyapunov exponents to measure chaoticity and frequency analysis to classify regular orbits. Here we first display the main properties of that potential and then focus our attention on the global dynamical features of the box domain for nine energy surfaces. Using the MEGNO as a fast dynamical indicator, we gain insight in the resonance structure at different energy levels, the way in which relatively large chaotic domains arise due to overlapping as well as crossings of resonances and we measure the fraction of chaotic motion in the energy space. It is interesting to notice that the flatness of the model varies over a rather wide range, namely from ~ $0.5$ to ~ $1$, and the fraction of chaotic motion ranges from ~ $0.15$ at small energies up to ~ $0.75$ at moderate values of the energy, decreasing then again down to values close to ~ $0.4$ where the system becomes nearly spherical.
Citation: Pablo Cincotta, Claudia Giordano, Juan C. Muzzio. Global dynamics in a self--consistent model of elliptical galaxy. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 439-454. doi: 10.3934/dcdsb.2008.10.439
[1]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[2]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[3]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[4]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[5]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[6]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[7]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[8]

Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199

[9]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[10]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[11]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[12]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[13]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[14]

Wen Tan, Chunyou Sun. Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6035-6067. doi: 10.3934/dcds.2017260

[15]

Henri Berestycki, Jean-Pierre Nadal, Nancy Rodíguez. A model of riots dynamics: Shocks, diffusion and thresholds. Networks & Heterogeneous Media, 2015, 10 (3) : 443-475. doi: 10.3934/nhm.2015.10.443

[16]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[17]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[18]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[19]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[20]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]