
Previous Article
Entropy estimates for a family of expanding maps of the circle
 DCDSB Home
 This Issue

Next Article
A mechanism for the fractalization of invariant curves in quasiperiodically forced 1D maps
Making the moon reverse its orbit, or, stuttering in the planar threebody problem
1.  Department of Mathematics, University of North Carolina Asheville, CPO#2350 Asheville, NC 288048511, United States 
2.  Department of Mathematics, Penn State, State College, PA 16801, United States 
3.  Mathematics Department, University of California, Santa Cruz, CA 95064, United States 
[1] 
Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the threebody problem. Conference Publications, 2011, 2011 (Special) : 11581166. doi: 10.3934/proc.2011.2011.1158 
[2] 
KuoChang Chen. On ChencinerMontgomery's orbit in the threebody problem. Discrete & Continuous Dynamical Systems  A, 2001, 7 (1) : 8590. doi: 10.3934/dcds.2001.7.85 
[3] 
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the crisscross orbit in the equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2016, 36 (11) : 59715991. doi: 10.3934/dcds.2016062 
[4] 
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted threebody problem. Discrete & Continuous Dynamical Systems  A, 1995, 1 (4) : 463474. doi: 10.3934/dcds.1995.1.463 
[5] 
Edward Belbruno. Random walk in the threebody problem and applications. Discrete & Continuous Dynamical Systems  S, 2008, 1 (4) : 519540. doi: 10.3934/dcdss.2008.1.519 
[6] 
Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear threebody problem. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 609620. doi: 10.3934/dcdsb.2008.10.609 
[7] 
Mitsuru Shibayama. Nonintegrability of the collinear threebody problem. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 299312. doi: 10.3934/dcds.2011.30.299 
[8] 
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted threebody problem. Discrete & Continuous Dynamical Systems  A, 2014, 34 (12) : 52295245. doi: 10.3934/dcds.2014.34.5229 
[9] 
Richard Moeckel. A proof of Saari's conjecture for the threebody problem in $\R^d$. Discrete & Continuous Dynamical Systems  S, 2008, 1 (4) : 631646. doi: 10.3934/dcdss.2008.1.631 
[10] 
Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved threebody problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems  A, 2013, 33 (3) : 11571175. doi: 10.3934/dcds.2013.33.1157 
[11] 
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2018, 38 (4) : 21872206. doi: 10.3934/dcds.2018090 
[12] 
Abimael Bengochea, Manuel Falconi, Ernesto PérezChavela. Horseshoe periodic orbits with one symmetry in the general planar threebody problem. Discrete & Continuous Dynamical Systems  A, 2013, 33 (3) : 9871008. doi: 10.3934/dcds.2013.33.987 
[13] 
Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted threebody problem: Analysis of resonant periodic orbits. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 849875. doi: 10.3934/dcdss.2019057 
[14] 
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted threebody problem: Euler angles, existence and stability. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 703710. doi: 10.3934/dcdss.2019044 
[15] 
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic threebody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 17631787. doi: 10.3934/dcds.2017074 
[16] 
Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (7) : 39894018. doi: 10.3934/dcds.2017169 
[17] 
JeanBaptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted threebody control. Conference Publications, 2011, 2011 (Special) : 229239. doi: 10.3934/proc.2011.2011.229 
[18] 
Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted threebody models for the Trojan motion. Discrete & Continuous Dynamical Systems  A, 2004, 11 (4) : 843854. doi: 10.3934/dcds.2004.11.843 
[19] 
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral sixbody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 19031922. doi: 10.3934/dcds.2017080 
[20] 
Yongming Luo, Athanasios Stylianou. On 3d dipolar BoseEinstein condensates involving quantum fluctuations and threebody interactions. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020239 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]