September  2008, 10(4): 733-759. doi: 10.3934/dcdsb.2008.10.733

Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems

1. 

INRIA Roquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

2. 

Saint-Venant Laboratory, 6 quai Watier, 78400 Chatou and INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

Received  April 2007 Revised  June 2008 Published  August 2008

From the free surface Navier-Stokes system, we derive the non-hydrostatic Saint-Venant system for the shallow waters including friction and viscosity. Based on an asymptotic analysis, the derivation leads to two formulations of growing complexity depending on the level of approximation chosen for the fluid pressure. The obtained models rely on formal estimates and are compared with the Boussinesq models.
Citation: Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733
[1]

Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917

[2]

Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks & Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177

[3]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[4]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[5]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[6]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[7]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[8]

Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021

[9]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[10]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[11]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[12]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[13]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[14]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[15]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[16]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[17]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[18]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[19]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[20]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]