# American Institute of Mathematical Sciences

September  2008, 10(4): 887-902. doi: 10.3934/dcdsb.2008.10.887

## Analysis of a dynamic Elastic-Viscoplastic contact problem with friction

 1 Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Nawojki 11, 30-072 Krakow 2 Jagiellonian University, Faculty of Mathematics and Computer Sciences, Institute of Computer Science, ul. Nawojki 11, 30-072 Krakow 3 Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan

Received  March 2007 Revised  May 2008 Published  August 2008

We consider a mathematical model which describes the frictional contact between a deformable body and a foundation. The process is dynamic, the material behavior is described with an elastic-viscoplastic constitutive law and the frictional contact is modeled with subdifferential boundary conditions. We derive the variational formulation of the problem which is in the form of a system involving an integral equation coupled with an evolutionary hemivariational inequality. Then we prove the existence of a unique weak solution to the model. The proof is based on arguments of abstract second order evolutionary inclusions with monotone operators and a fixed point theorem.
Citation: Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887
 [1] Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339 [2] Furi Guo, Jinrong Wang, Jiangfeng Han. Impulsive hemivariational inequality for a class of history-dependent quasistatic frictional contact problems. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021057 [3] Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039 [4] Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129 [5] Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 [6] Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587 [7] Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem†. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048 [8] Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61 [9] Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221 [10] Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 [11] Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 [12] Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations & Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058 [13] Qianqian Wang, Minan Tang, Aimin An, Jiawei Lu, Yingying Zhao. Parameter optimal identification and dynamic behavior analysis of nonlinear model for the solution purification process of zinc hydrometallurgy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021159 [14] Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687 [15] Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1521-1543. doi: 10.3934/cpaa.2021031 [16] Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulations of a frictional contact problem with damage and memory. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021037 [17] Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549 [18] C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 [19] Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati. Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021023 [20] Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

2020 Impact Factor: 1.327