
Previous Article
An investigation of the global properties of a twodimensional competing species model
 DCDSB Home
 This Issue

Next Article
Travelling waves for a combustion model coupled with hyperbolic radiation moment models
Homogenization of the Maxwell's system for conducting media
1.  Department of Electronics Engineering and Computer Science, Tung Fang Institute of Technology, Kaohsiung 829, Taiwan 
2.  Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan 
3.  General Education Center, Fortune Institute of Technology, Kaohsiung, Taiwan 
[1] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[2] 
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in onespace dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754762. doi: 10.3934/proc.2011.2011.754 
[3] 
Yan Chen, Kewei Zhang. Young measure solutions of the twodimensional PeronaMalik equation in image processing. Communications on Pure & Applied Analysis, 2006, 5 (3) : 617637. doi: 10.3934/cpaa.2006.5.617 
[4] 
J. J. Morgan, HongMing Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems  B, 2001, 1 (4) : 485494. doi: 10.3934/dcdsb.2001.1.485 
[5] 
Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 11851196. doi: 10.3934/krm.2019045 
[6] 
Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826834. doi: 10.3934/proc.2015.0826 
[7] 
T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277288. doi: 10.3934/cpaa.2006.5.277 
[8] 
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 30153027. doi: 10.3934/dcdsb.2016085 
[9] 
Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 18951916. doi: 10.3934/cpaa.2009.8.1895 
[10] 
Pedro AcevesSánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541551. doi: 10.3934/krm.2017021 
[11] 
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409439. doi: 10.3934/krm.2018019 
[12] 
Ammari Zied, Liard Quentin. On uniqueness of measurevalued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 723748. doi: 10.3934/dcds.2018032 
[13] 
Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 793806. doi: 10.3934/dcdsb.2007.7.793 
[14] 
T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217235. doi: 10.3934/cpaa.2004.3.217 
[15] 
Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems  A, 2009, 24 (1) : 159185. doi: 10.3934/dcds.2009.24.159 
[16] 
Eugenio Sinestrari. Wave equation with memory. Discrete & Continuous Dynamical Systems  A, 1999, 5 (4) : 881896. doi: 10.3934/dcds.1999.5.881 
[17] 
H. A. Erbay, S. Erbay, A. Erkip. The CamassaHolm equation as the longwave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems  A, 2016, 36 (11) : 61016116. doi: 10.3934/dcds.2016066 
[18] 
Rong Yang, Li Chen. Meanfield limit for a collisionavoiding flocking system and the timeasymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381400. doi: 10.3934/krm.2014.7.381 
[19] 
Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic FokkerPlanck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727748. doi: 10.3934/krm.2019028 
[20] 
Ugur G. Abdulla. Wiener's criterion at $\infty$ for the heat equation and its measuretheoretical counterpart. Electronic Research Announcements, 2008, 15: 4451. doi: 10.3934/era.2008.15.44 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]