# American Institute of Mathematical Sciences

January  2008, 9(1): 129-143. doi: 10.3934/dcdsb.2008.9.129

## Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity

 1 Department of Mathematics, Central South University, Changsha, Hunan 410076, China 2 Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Nawojki 11, 30-072 Krakow

Received  October 2006 Revised  September 2007 Published  October 2007

In this paper we consider an evolution problem which model the frictional skin effects in piezoelectricity. The model consists of the system of the hemivariational inequality of hyperbolic type for the displacement and the time dependent elliptic equation for the electric potential. In the hemivariational inequality the viscosity term is noncoercive and the friction forces are derived from a nonconvex superpotential through the generalized Clarke subdifferential. The existence of weak solutions is proved by embedding the problem into a class of second order evolution inclusions and by applying a parabolic regularization method.
Citation: Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129
 [1] Chibueze Christian Okeke, Abdulmalik Usman Bello, Lateef Olakunle Jolaoso, Kingsley Chimuanya Ukandu. Inertial method for split null point problems with pseudomonotone variational inequality problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021037 [2] Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058 [3] Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339 [4] Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial and Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827 [5] Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 [6] Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046 [7] Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320 [8] Dang Van Hieu, Le Dung Muu, Pham Kim Quy. New iterative regularization methods for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021185 [9] Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036 [10] Furi Guo, Jinrong Wang, Jiangfeng Han. Impulsive hemivariational inequality for a class of history-dependent quasistatic frictional contact problems. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021057 [11] Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168 [12] Leszek Gasiński, Liliana Klimczak, Nikolaos S. Papageorgiou. Nonlinear noncoercive Neumann problems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1107-1123. doi: 10.3934/cpaa.2016.15.1107 [13] Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857 [14] Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial and Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027 [15] Maria Michaela Porzio. Existence of solutions for some "noncoercive" parabolic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 553-568. doi: 10.3934/dcds.1999.5.553 [16] Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure and Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 [17] Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447 [18] Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729 [19] Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939 [20] Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations and Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007

2020 Impact Factor: 1.327