March  2008, 9(2): 353-374. doi: 10.3934/dcdsb.2008.9.353

The effect of the remains of the carcass in a two-prey, one-predator model

1. 

Graduate School of Environmental Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan

2. 

Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan

Received  May 2007 Revised  October 2007 Published  December 2007

We propose a two-prey, one-predator model involving the effect of the carcass. We consider a commensal interaction that a prey species eats the remains of the other prey species’ carcass given by their predator. Under some biological assumptions, we construct two ODE models. We analyze the linear stability and prove the permanence of the two models. We also show that the effect of the remains of the carcass leads to chaotic dynamics for biologically reasonable choices of parameters by numerical simulations. Finally, we discuss the dynamical results and the coexistent regions of the three species.
Citation: Sungrim Seirin Lee, Tsuyoshi Kajiwara. The effect of the remains of the carcass in a two-prey, one-predator model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 353-374. doi: 10.3934/dcdsb.2008.9.353
[1]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[2]

Jeong-Mi Yoon, Volodymyr Hrynkiv, Lisa Morano, Anh Tuan Nguyen, Sara Wilder, Forrest Mitchell. Mathematical modeling of Glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 667-677. doi: 10.3934/mbe.2014.11.667

[3]

Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425

[4]

Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010

[5]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[6]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[7]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[8]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[9]

A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250

[10]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[11]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[12]

Karly Jacobsen, Jillian Stupiansky, Sergei S. Pilyugin. Mathematical modeling of citrus groves infected by huanglongbing. Mathematical Biosciences & Engineering, 2013, 10 (3) : 705-728. doi: 10.3934/mbe.2013.10.705

[13]

Bashar Ibrahim. Mathematical analysis and modeling of DNA segregation mechanisms. Mathematical Biosciences & Engineering, 2018, 15 (2) : 429-440. doi: 10.3934/mbe.2018019

[14]

Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289-306. doi: 10.3934/mbe.2011.8.289

[15]

Evans K. Afenya. Using Mathematical Modeling as a Resource in Clinical Trials. Mathematical Biosciences & Engineering, 2005, 2 (3) : 421-436. doi: 10.3934/mbe.2005.2.421

[16]

Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 805-821. doi: 10.3934/dcdss.2020046

[17]

Mirosław Lachowicz, Martin Parisot, Zuzanna Szymańska. Intracellular protein dynamics as a mathematical problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2551-2566. doi: 10.3934/dcdsb.2016060

[18]

Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305

[19]

Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191

[20]

Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]