March  2008, 9(2): 375-396. doi: 10.3934/dcdsb.2008.9.375

Uniqueness in determining multiple polygonal scatterers of mixed type

1. 

Department of Mathematics, University of Washington, Box 354350, Seattle WA 98195, United States

2. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received  July 2007 Revised  November 2007 Published  December 2007

We prove that a polygonal scatterer in $\mathbb{R}^2$, possibly consisting of finitely many sound-soft and sound-hard polygons, is uniquely determined by a single far-field measurement.
Citation: Hongyu Liu, Jun Zou. Uniqueness in determining multiple polygonal scatterers of mixed type. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 375-396. doi: 10.3934/dcdsb.2008.9.375
[1]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[3]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems and Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[4]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[5]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems and Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[6]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems and Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[7]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[8]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[9]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[10]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[11]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems and Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[12]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[13]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems and Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[14]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[15]

Xinlin Cao, Huaian Diao, Hongyu Liu, Jun Zou. Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022023

[16]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems and Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[17]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[18]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[19]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems and Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[20]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]