May  2008, 9(3&4, May): 493-516. doi: 10.3934/dcdsb.2008.9.493

Minimal subsets of projective flows

1. 

Department of Mathematics and Statistics, Queen's University, Kingston, ON Canada K7L 3N6, Canada

2. 

Dipartimento di Sistemi e Informatica, Università di Firenze, Via di S. Marta 3, 50139 Firenze

Received  January 2007 Revised  June 2007 Published  February 2008

We study the minimal subsets of the projective flow defined by a two-dimensional linear differential system with almost periodic coefficients. We show that such a minimal set may exhibit Li-Yorke chaos and discuss specific examples in which this phenomenon is present. We then give a classification of these minimal sets, and use it to discuss the bounded mean motion property relative to the projective flow.
Citation: Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493
[1]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[2]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[3]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[4]

Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629

[5]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[6]

Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

[7]

Motahhareh Gharahi, Shahram Khazaei. Reduced access structures with four minimal qualified subsets on six participants. Advances in Mathematics of Communications, 2018, 12 (1) : 199-214. doi: 10.3934/amc.2018014

[8]

James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217

[9]

Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-36. doi: 10.3934/dcds.2019236

[10]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[11]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[12]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[13]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[14]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[15]

Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983

[16]

Víctor Jiménez López, Gabriel Soler López. A topological characterization of ω-limit sets for continuous flows on the projective plane. Conference Publications, 2001, 2001 (Special) : 254-258. doi: 10.3934/proc.2001.2001.254

[17]

Ronald A. Knight. Compact minimal sets in continuous recurrent flows. Conference Publications, 1998, 1998 (Special) : 397-407. doi: 10.3934/proc.1998.1998.397

[18]

Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540

[19]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[20]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]