January  2009, 11(1): 1-10. doi: 10.3934/dcdsb.2009.11.1

Variational models for incompressible Euler equations

1. 

Scuola Normale Superiore, Piazza Cavalieri 7, 56123 Pisa, Italy

Received  November 2007 Revised  March 2008 Published  November 2008

In this paper we illustrate some recent work [1], [2] on Brenier's variational models for incompressible Euler equations. These models give rise to a relaxation of the Arnold distance in the space of measure-preserving maps and, more generally, measure-preserving plans. We analyze the properties of the relaxed distance, we show a close link between the Lagrangian and the Eulerian model, and we derive necessary and sufficient optimality conditions for minimizers. These conditions take into account a modified Lagrangian induced by the pressure field.
Citation: Luigi Ambrosio. Variational models for incompressible Euler equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 1-10. doi: 10.3934/dcdsb.2009.11.1
[1]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

[2]

Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353

[3]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[4]

S. Eigen, A. B. Hajian, V. S. Prasad. Universal skyscraper templates for infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 343-360. doi: 10.3934/dcds.2006.16.343

[5]

Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365

[6]

H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361

[7]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[8]

Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007

[9]

Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61

[10]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[11]

A. Daducci, A. Marigonda, G. Orlandi, R. Posenato. Neuronal Fiber--tracking via optimal mass transportation. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2157-2177. doi: 10.3934/cpaa.2012.11.2157

[12]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[13]

Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053

[14]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[15]

Casimir Emako, Farah Kanbar, Christian Klingenberg, Min Tang. A criterion for asymptotic preserving schemes of kinetic equations to be uniformly stationary preserving. Kinetic and Related Models, 2021, 14 (5) : 847-866. doi: 10.3934/krm.2021026

[16]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[19]

Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152

[20]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]