$ u_{t}-$div$A(Du)=0, $ $ (x,t)\in \Omega \times (0,T)=\Omega_{T}, $
where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $T>0$, $A:\mathbb{R}^{nN}\to \mathbb{R}^{N}$ satisfies a $p$-growth condition and $u:\Omega_{T}\to \mathbb{R}^{N}$. In particular we focus on the case $\frac{2n}{n+2} < p < 2.$
Citation: |