March  2009, 11(2): 233-262. doi: 10.3934/dcdsb.2009.11.233

A geometric analysis of trajectory design for underwater vehicles

1. 

University of Hawaii, Department of Mathematics, Honolulu, HI 96822, United States, United States

2. 

Université d'Orléans, Laboratoire MAPMO, 45067 Orléans Cedex, France

3. 

University of Hawaii, Ocean & Resources Engineering Department, Honolulu, HI 96822, United States

Received  October 2007 Revised  April 2008 Published  December 2008

Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning approach using a concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reductions; thereby linking the optimization problem to the inherent geometric framework. Using these kinematic reductions, we provide a solution to the motion planning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by a concatenation of pure motions.
Citation: Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233
[1]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[2]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[3]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[4]

B. Bonnard, J.-B. Caillau, E. Trélat. Geometric optimal control of elliptic Keplerian orbits. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 929-956. doi: 10.3934/dcdsb.2005.5.929

[5]

Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493

[6]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[7]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[8]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[9]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[10]

Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375

[11]

Monique Chyba, Geoff Patterson, Gautier Picot, Mikael Granvik, Robert Jedicke, Jeremie Vaubaillon. Designing rendezvous missions with mini-moons using geometric optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 477-501. doi: 10.3934/jimo.2014.10.477

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations & Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003

[13]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[14]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[15]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[16]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[17]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[18]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[19]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[20]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]