
Previous Article
Study on selfadaptive proportional control method for a class of output models
 DCDSB Home
 This Issue

Next Article
KPP fronts in a onedimensional random drift
The role of processing speed in determining step patterns during directional epitaxy
1.  Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, United States 
2.  Department of Mathematics, University of Tennessee, 121 Ayres Hall, 1403 Circle Drive, Knoxville, TN 37996, United States 
[1] 
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2021 doi: 10.3934/fods.2021034 
[2] 
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291315. doi: 10.3934/krm.2013.6.291 
[3] 
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81105. doi: 10.3934/ipi.2013.7.81 
[4] 
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 2747. doi: 10.3934/fods.2021004 
[5] 
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201224. doi: 10.3934/fods.2021014 
[6] 
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 38813903. doi: 10.3934/dcdsb.2018335 
[7] 
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683696. doi: 10.3934/mbe.2006.3.683 
[8] 
Yuan Gao, Hangjie Ji, JianGuo Liu, Thomas P. Witelski. A vicinal surface model for epitaxial growth with logarithmic free energy. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 44334453. doi: 10.3934/dcdsb.2018170 
[9] 
Chjan C. Lim, Joseph Nebus, Syed M. Assad. MonteCarlo and polyhedronbased simulations I: extremal states of the logarithmic Nbody problem on a sphere. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 313342. doi: 10.3934/dcdsb.2003.3.313 
[10] 
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems  B, 2005, 5 (1) : 125136. doi: 10.3934/dcdsb.2005.5.125 
[11] 
OlliPekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803824. doi: 10.3934/nhm.2013.8.803 
[12] 
Mazyar ZahediSeresht, GholamReza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 403416. doi: 10.3934/naco.2017025 
[13] 
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591617. doi: 10.3934/krm.2008.1.591 
[14] 
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 55815590. doi: 10.3934/cpaa.2020252 
[15] 
Yang Liu, Wenke Li. A class of fourthorder nonlinear parabolic equations modeling the epitaxial growth of thin films. Discrete & Continuous Dynamical Systems  S, 2021, 14 (12) : 43674381. doi: 10.3934/dcdss.2021112 
[16] 
Christopher Oballe, Alan Cherne, Dave Boothe, Scott Kerick, Piotr J. Franaszczuk, Vasileios Maroulas. Bayesian topological signal processing. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021084 
[17] 
Xiaoming Zheng, Gou Young Koh, Trachette Jackson. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, plateletderived growth factorB, and pericytes. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : 11091154. doi: 10.3934/dcdsb.2013.18.1109 
[18] 
Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557575. doi: 10.3934/ipi.2007.1.557 
[19] 
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 16711687. doi: 10.3934/dcdsb.2016017 
[20] 
Yan Jin, Jürgen Jost, Guofang Wang. A new nonlocal variational setting for image processing. Inverse Problems & Imaging, 2015, 9 (2) : 415430. doi: 10.3934/ipi.2015.9.415 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]