• Previous Article
    Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains
  • DCDS-B Home
  • This Issue
  • Next Article
    Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos
June  2009, 11(4): 997-1018. doi: 10.3934/dcdsb.2009.11.997

Linear stability analysis of systems with Preisach memory

1. 

Department of Applied Mathematics, University College Cork, Ireland

2. 

Department of Applied Mathematics, University College Cork, Cork, Ireland

Received  June 2008 Revised  December 2008 Published  April 2009

We consider differential equations coupled with the input-output memory relation defined by the Preisach operator. The differential equation relates an instant value of the rate of change of the output of the Preisach operator with an instant value of its input. We propose an algorithm for the linearisation of the evolution operator of the system and apply it to define the characteristic multiplier of periodic solutions, which determines their stability. Examples of the system considered include models of terrestrial hydrology and electronic oscillators with hysteresis.
Citation: Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997
[1]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[2]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[3]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[4]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[5]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[6]

Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3051-3066. doi: 10.3934/dcdsb.2018299

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

[9]

Saulo R.M. Barros, Antônio L. Pereira, Cláudio Possani, Adilson Simonis. Spatially periodic equilibria for a non local evolution equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 937-948. doi: 10.3934/dcds.2003.9.937

[10]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[11]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[12]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[13]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[14]

Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101

[15]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[16]

Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002

[17]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[18]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[19]

E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323

[20]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]