Advanced Search
Article Contents
Article Contents

Global bifurcation for discrete competitive systems in the plane

Abstract Related Papers Cited by
  • A global bifurcation result is obtained for families of competitive systems of difference equations

    $x_{n+1} = f_\alpha(x_n,y_n) $
    $y_{n+1} = g_\alpha(x_n,y_n)$

    where $\alpha$ is a parameter, $f_\alpha$ and $g_\alpha$ are continuous real valued functions on a rectangular domain $\mathcal{R}_\alpha \subset \mathbb{R}^2$ such that $f_\alpha(x,y)$ is non-decreasing in $x$ and non-increasing in $y$, and $g_\alpha(x, y)$ is non-increasing in $x$ and non-decreasing in $y$. A unique interior fixed point is assumed for all values of the parameter $\alpha$.
        As an application of the main result for competitive systems a global period-doubling bifurcation result is obtained for families of second order difference equations of the type

    $x_{n+1} = F_\alpha(x_n, x_{n-1}), \quad n=0,1, \ldots $

    where $\alpha$ is a parameter, $F_\alpha:\mathcal{I_\alpha}\times \mathcal{I_\alpha} \rightarrow \mathcal{I_\alpha}$ is a decreasing function in the first variable and increasing in the second variable, and $\mathcal{I_\alpha}$ is a interval in $\mathbb{R}$, and there is a unique interior equilibrium point. Examples of application of the main results are also given.

    Mathematics Subject Classification: Primary: 37G35 Secondary: 39A10, 39A11.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(96) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint