\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Particle, kinetic and fluid models for phototaxis

Abstract / Introduction Related Papers Cited by
  • In this work we derive a hierarchy of new mathematical models for describing the motion of phototactic bacteria, i.e., bacteria that move towards light. These models are based on recent experiments suggesting that the motion of such bacteria depends on the individual bacteria, on group dynamics, and on the interaction between bacteria and their environment. Our first model is a collisionless interacting particle system in which we follow the location of the bacteria, their velocity, and their internal excitation (a parameter whose role is assumed to be related to communication between bacteria). In this model, the light source acts as an external force. The resulting particle system is an extension of the Cucker-Smale flocking model. We prove that when all particles are fully excited, their asymptotic velocity tends to an identical (pre-determined) terminal velocity. Our second model is a kinetic model for the one-particle distribution function that includes an internal variable representing the excitation level. The kinetic model is a Vlasov-type equation that is derived from the particle system using the BBGKY hierarchy and molecular chaos assumption. Since bacteria tend to move in areas that were previously traveled by other bacteria, a surface memory effect is added to the kinetic model as a turning operator that accounts for the collisions between bacteria and the environment. The third and final model is derived as a formal macroscopic limit of the kinetic model. It is shown to be the Vlasov-McKean equation coupled with a reaction-diffusion equation.
    Mathematics Subject Classification: Primary: 92C17; Secondary: 82C22, 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return