
Previous Article
Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis
 DCDSB Home
 This Issue

Next Article
Numerical computation of dichotomy rates and projectors in discrete time
Particle, kinetic and fluid models for phototaxis
1.  Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151747 
2.  Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742 
[1] 
ChiunChuan Chen, SeungYeal Ha, Xiongtao Zhang. The global wellposedness of the kinetic CuckerSmale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505538. doi: 10.3934/cpaa.2018028 
[2] 
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of CuckerSmale type. Kinetic & Related Models, 2011, 4 (1) : 116. doi: 10.3934/krm.2011.4.1 
[3] 
ChunHsien Li, SuhYuh Yang. A new discrete CuckerSmale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 25872599. doi: 10.3934/dcdsb.2016062 
[4] 
SeungYeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional CuckerSmale model. Discrete & Continuous Dynamical Systems  A, 2019, 39 (9) : 54655489. doi: 10.3934/dcds.2019223 
[5] 
HyeongOhk Bae, YoungPil Choi, SeungYeal Ha, MoonJin Kang. Asymptotic flocking dynamics of CuckerSmale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 44194458. doi: 10.3934/dcds.2014.34.4419 
[6] 
YoungPil Choi, Samir Salem. CuckerSmale flocking particles with multiplicative noises: Stochastic meanfield limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573592. doi: 10.3934/krm.2019023 
[7] 
Jean Dolbeault. An introduction to kinetic equations: the VlasovPoisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems  A, 2002, 8 (2) : 361380. doi: 10.3934/dcds.2002.8.361 
[8] 
SeungYeal Ha, Shi Jin. Local sensitivity analysis for the CuckerSmale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859889. doi: 10.3934/krm.2018034 
[9] 
Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the CuckerSmale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447466. doi: 10.3934/mcrf.2013.3.447 
[10] 
YoungPil Choi, Jan Haskovec. CuckerSmale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 10111033. doi: 10.3934/krm.2017040 
[11] 
SeungYeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the CuckerSmale model with unit speed. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 27632793. doi: 10.3934/dcds.2018116 
[12] 
SeungYeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of CuckerSmale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689723. doi: 10.3934/krm.2017028 
[13] 
Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micromacro numerical schemes for VlasovPoissonBGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787816. doi: 10.3934/krm.2012.5.787 
[14] 
Ioannis Markou. Collisionavoiding in the singular CuckerSmale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 52455260. doi: 10.3934/dcds.2018232 
[15] 
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discretetime fractionalorder CuckerSmale model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 347357. doi: 10.3934/dcdsb.2018023 
[16] 
SeungYeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the CuckerSmale model and its application to the MeanField limit. Kinetic & Related Models, 2018, 11 (5) : 11571181. doi: 10.3934/krm.2018045 
[17] 
YoungPil Choi, SeungYeal Ha, Jeongho Kim. Propagation of regularity and finitetime collisions for the thermomechanical CuckerSmale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379407. doi: 10.3934/nhm.2018017 
[18] 
JiuGang Dong, SeungYeal Ha, Doheon Kim. Interplay of timedelay and velocity alignment in the CuckerSmale model on a general digraph. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 128. doi: 10.3934/dcdsb.2019072 
[19] 
Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKeanVlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems  A, 2016, 36 (12) : 67996833. doi: 10.3934/dcds.2016096 
[20] 
Ugo Bessi. Viscous AubryMather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems  A, 2014, 34 (2) : 379420. doi: 10.3934/dcds.2014.34.379 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]