• Previous Article
    Distributed susceptibility: A challenge to persistence theory in infectious disease models
  • DCDS-B Home
  • This Issue
  • Next Article
    Dependence of propagation speed on invader species: The effect of the predatory commensalism in two-prey, one-predator system with diffusion
November  2009, 12(4): 827-864. doi: 10.3934/dcdsb.2009.12.827

A mathematical analysis of malaria and tuberculosis co-dynamics


Dar es Salaam Institute of Technology, P.O.Box 2958, Dar es Salaam, Tanzania


Department of Mathematics, University of Dar es Salaam, P.O. Box 35062, Dar es Salaam, Tanzania, Tanzania

Received  October 2008 Revised  February 2009 Published  August 2009

We formulate and analyze a deterministic mathematical model which incorporates some basic epidemiological features of the co-dynamics of malaria and tuberculosis. Two sub-models, namely: malaria-only and TB-only sub-models are considered first of all. Sufficient conditions for the local stability of the steady states are presented. Global stability of the disease-free steady state does not hold because the two sub-models exhibit backward bifurcation. The dynamics of the dual malaria-TB only sub-model is also analyzed. It has different dynamics to that of malaria-only and TB-only sub-models: the dual malaria-TB only model has no positive endemic equilibrium whenever $R_{MT}^d<1$, - its disease free equilibrium is globally asymptotically stable whenever the reproduction number for dual malaria-TB co-infection only $R_{MT}^d<1$ - it does not exhibit the phenomenon of backward bifurcation. Graphical representations of this phenomenon is shown, while numerical simulations of the full model are carried out in order to determine whether the two diseases will co-exist whenever their partial reproductive numbers exceed unity. Finally, we perform sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative importance to disease transmission.
Citation: Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37


Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595


Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024


Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333


Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455


Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang. Analysis of an age-structured model for HIV-TB co-infection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021037


Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021170


Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez. Modeling TB and HIV co-infections. Mathematical Biosciences & Engineering, 2009, 6 (4) : 815-837. doi: 10.3934/mbe.2009.6.815


Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995


Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055


Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166


Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015


Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479


Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239


Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705


Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011


A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021108


Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006


Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010


Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2923-2939. doi: 10.3934/dcdsb.2018292

2020 Impact Factor: 1.327


  • PDF downloads (165)
  • HTML views (0)
  • Cited by (21)

[Back to Top]