\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip

Abstract Related Papers Cited by
  • We derive an age-structured population model for the growth of a single species on a 2-dimensional (2D) lattice strip with Neumann boundary conditions. We show that the dynamics of the mature population is governed by a lattice reaction-diffusion system with delayed global interaction. Using theory of asymptotic speed of spread and monotone traveling waves for monotone semiflows, we obtain the asymptotic speed of spread $c^$*, the nonexistence of traveling wavefronts with wave speed $0 < c < c^$*, and the existence of traveling wavefront connecting the two equilibria $w\equiv 0$ and $w\equiv w^+$ for $c\geq c^$*.
    Mathematics Subject Classification: Primary: 34K31, 34K25; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return