
Previous Article
Singular control and impulse control: A common approach
 DCDSB Home
 This Issue
 Next Article
Theoretical assessment of avian influenza vaccine
1.  Department of Mathematical Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria 
2.  Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 
[1] 
Erin N. Bodine, Connor Cook, Mikayla Shorten. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences & Engineering, 2018, 15 (2) : 337359. doi: 10.3934/mbe.2018015 
[2] 
Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect antiSARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485512. doi: 10.3934/mbe.2006.3.485 
[3] 
Tufail Malik, Jody Reimer, Abba Gumel, Elamin H. Elbasha, Salaheddin Mahmud. The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer. Mathematical Biosciences & Engineering, 2013, 10 (4) : 11731205. doi: 10.3934/mbe.2013.10.1173 
[4] 
Bruno Buonomo, Eleonora Messina. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 539552. doi: 10.3934/mbe.2012.9.539 
[5] 
Shu Liao, Jin Wang, Jianjun Paul Tian. A computational study of avian influenza. Discrete & Continuous Dynamical Systems  S, 2011, 4 (6) : 14991509. doi: 10.3934/dcdss.2011.4.1499 
[6] 
Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219238. doi: 10.3934/mbe.2008.5.219 
[7] 
Francesco Salvarani, Gabriel Turinici. Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection. Mathematical Biosciences & Engineering, 2018, 15 (3) : 629652. doi: 10.3934/mbe.2018028 
[8] 
Ruben A. Proano, Sheldon H. Jacobson, Janet A. Jokela. A multiattribute approach for setting pediatric vaccine stockpile levels. Journal of Industrial & Management Optimization, 2010, 6 (4) : 709727. doi: 10.3934/jimo.2010.6.709 
[9] 
Julien Arino, K.L. Cooke, P. van den Driessche, J. VelascoHernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete & Continuous Dynamical Systems  B, 2004, 4 (2) : 479495. doi: 10.3934/dcdsb.2004.4.479 
[10] 
Kasia A. Pawelek, Anne OeldorfHirsch, Libin Rong. Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 13371356. doi: 10.3934/mbe.2014.11.1337 
[11] 
Naveen K. Vaidya, FengBin Wang, Xingfu Zou. Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 28292848. doi: 10.3934/dcdsb.2012.17.2829 
[12] 
Muhammad Altaf Khan, Muhammad Farhan, Saeed Islam, Ebenezer Bonyah. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 455474. doi: 10.3934/dcdss.2019030 
[13] 
Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems  B, 2014, 19 (4) : 9991025. doi: 10.3934/dcdsb.2014.19.999 
[14] 
Erica M. Rutter, Yang Kuang. Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 10011021. doi: 10.3934/dcdsb.2017050 
[15] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[16] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[17] 
Arni S.R. Srinivasa Rao. Modeling the rapid spread of avian influenza (H5N1) in India. Mathematical Biosciences & Engineering, 2008, 5 (3) : 523537. doi: 10.3934/mbe.2008.5.523 
[18] 
Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virusdriven proliferation of target cells. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 17491768. doi: 10.3934/dcdsb.2014.19.1749 
[19] 
Karen R. RíosSoto, Baojun Song, Carlos CastilloChavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199222. doi: 10.3934/mbe.2011.8.199 
[20] 
Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445458. doi: 10.3934/mbe.2006.3.445 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]