\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications

Abstract Related Papers Cited by
  • This paper is concerned with monotone traveling wave solutions of reaction-diffusion systems with spatio-temporal delay. Our approach is to use a new monotone iteration scheme based on a lower solution in the set of the profiles. The smoothness of upper and lower solutions is not required in this paper. We will apply our results to Nicholson's blowflies systems with non-monotone birth functions and show that the systems admit traveling wave solutions connecting two spatially homogeneous equilibria and the wave shape is monotone. Due to the biological realism, the positivity of the monotone traveling wave solutions can be directly obtained by the construction of suitable upper-lower solutions.
    Mathematics Subject Classification: Primary: 35K57, 34K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return