June  2010, 13(4): 729-738. doi: 10.3934/dcdsb.2010.13.729

Large-scale vorticity generation due to dissipating waves in the surf zone

1. 

Université Bordeaux 1, CNRS, UMR 5805-EPOC, avenue des Facultés, Talence, F-33405, France, France, France

2. 

Université Montpellier 2, Institut de Mathématiques et de Modélisation de Montpellier, CC 051, Place Eugene Bataillon, 34095 Montpellier cedex 5, France

Received  April 2009 Revised  May 2009 Published  March 2010

In this paper, we investigate the mechanisms which control the generation of wave-induced mean current vorticity in the surf zone. From the vertically-integrated and time-averaged momentum equations given recently by Smith [21], we obtain a vorticity forcing term related to differential broken-wave energy dissipation. Then, we derive a new equation for the mean current vorticity, from the nonlinear shallow water shock-wave theory. Both approaches are consistent, under the shallow water assumption, but the later gives explicitly the generation term of vorticity, without any ad-hoc parametrization of the broken-wave energy dissipation.
Citation: Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729
[1]

Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89

[2]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[3]

Darryl D. Holm, Ruiao Hu. Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022004

[4]

Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917

[5]

Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177

[6]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[7]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[8]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[9]

Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531

[10]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[11]

E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189

[12]

Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491

[13]

George Dassios, Michalis N. Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 2009, 3 (2) : 243-257. doi: 10.3934/ipi.2009.3.243

[14]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[15]

Sharif E. Guseynov, Eugene A. Kopytov, Edvin Puzinkevich. On continuous models of current stock of divisible productions. Conference Publications, 2011, 2011 (Special) : 601-613. doi: 10.3934/proc.2011.2011.601

[16]

Amir Moradifam, Robert Lopez. Stability of current density impedance imaging II. Communications on Pure and Applied Analysis, 2021, 20 (11) : 4025-4041. doi: 10.3934/cpaa.2021142

[17]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[18]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[19]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[20]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (24)

[Back to Top]