# American Institute of Mathematical Sciences

June  2010, 13(4): 739-758. doi: 10.3934/dcdsb.2010.13.739

## A robust well-balanced scheme for multi-layer shallow water equations

 1 DMA, CNRS & École Normale Supérieure, 45 Rue d’Ulm, F-75230 Paris cedex 05, France 2 LMD, École Normale Supérieure, 24 Rue Lhomond, F-75231 Paris cedex 05, France

Received  April 2009 Revised  May 2009 Published  March 2010

The numerical resolution of the multi-layer shallow water system encounters two additional difficulties with respect to the one-layer system. The first is that the system involves nonconservative terms, and the second is that it is not always hyperbolic. A splitting scheme has been proposed by Bouchut and Morales, that enables to ensure a discrete entropy inequality and the well-balanced property, without any theoretical difficulty related to the loss of hyperbolicity. However, this scheme has been shown to often give wrong solutions. We introduce here a variant of the splitting scheme, that has the overall property of being conservative in the total momentum. It is based on a source-centered hydrostatic scheme for the one-layer shallow water system, a variant of the hydrostatic scheme. The final method enables to treat an arbitrary number $m$ of layers, with arbitrary densities $\rho_1$,...,$\rho_m$, and arbitrary topography. It has no restriction concerning complex eigenvalues, it is well-balanced and it is able to treat vacuum, it satisfies a semi-discrete entropy inequality. The scheme is fast to execute, as is the one-layer hydrostatic method.
Citation: François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739
 [1] Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks. Networks & Heterogeneous Media, 2019, 14 (4) : 659-676. doi: 10.3934/nhm.2019026 [2] Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1 [3] Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 [4] Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133 [5] Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145 [6] T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171 [7] Haigang Li, Jenn-Nan Wang, Ling Wang. Refined stability estimates in electrical impedance tomography with multi-layer structure. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021048 [8] Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733 [9] Boris Andreianov, Nicolas Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 1939-1964. doi: 10.3934/dcds.2012.32.1939 [10] Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic & Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283 [11] Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327 [12] Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331 [13] Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558 [14] Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89 [15] Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653 [16] Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062 [17] Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284 [18] Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 [19] Jinsen Zhuang, Yan Zhou, Yonghui Xia. Synchronization analysis of drive-response multi-layer dynamical networks with additive couplings and stochastic perturbations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1607-1629. doi: 10.3934/dcdss.2020279 [20] Djano Kandaswamy, Thierry Blu, Dimitri Van De Ville. Analytic sensing for multi-layer spherical models with application to EEG source imaging. Inverse Problems & Imaging, 2013, 7 (4) : 1251-1270. doi: 10.3934/ipi.2013.7.1251

2020 Impact Factor: 1.327