January  2010, 13(1): 79-100. doi: 10.3934/dcdsb.2010.13.79

Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models

1. 

Sezione di Matematica per l’Ingegneria, Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila, Facoltà di Ingegneria, Piazzale E. Pontieri, I-67040 - Monteluco di Roio - L’Aquila, Italy

2. 

Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito (AQ)

Received  January 2008 Revised  December 2008 Published  October 2009

In this paper we deal with diffusive relaxation limits of nonlinear systems of Euler type modeling chemotactic movement of cells toward Keller-Segel type systems. The approximating systems are either hyperbolic-parabolic or hyperbolic-elliptic. They all feature a nonlinear pressure term arising from a volume filling effect which takes into account the fact that cells do not interpenetrate. The main convergence result relies on energy methods and compensated compactness tools and is obtained for large initial data under suitable assumptions on the approximating solutions. In order to justify such assumptions, we also prove an existence result for initial data which are small perturbation of a constant state. Such result is proven via classical Friedrichs's symmetrization and linearization. In order to simplify the coverage, we restrict to the two-dimensional case with periodical boundary conditions.
Citation: Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79
[1]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[2]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[3]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[4]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[5]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

[6]

Jacob Bedrossian, Nancy Rodríguez. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $\mathbb{R}^d$. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1279-1309. doi: 10.3934/dcdsb.2014.19.1279

[7]

J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022045

[8]

Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911

[9]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[10]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[11]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[12]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[13]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[14]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6253-6265. doi: 10.3934/dcdsb.2021017

[15]

José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319

[16]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic and Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[17]

Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044

[18]

Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1931-1966. doi: 10.3934/dcdsb.2020326

[19]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]