October  2010, 14(3): 1237-1249. doi: 10.3934/dcdsb.2010.14.1237

Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems

1. 

Faculty of mathematics and physics, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China

2. 

Department of Mathematics, Southeast University, Nanjing 210096

Received  June 2009 Revised  December 2009 Published  July 2010

In this paper we consider the persistence of lower dimensional elliptic invariant tori with prescribed frequencies in reversible systems, and prove that if the frequency mapping has non-zero Brouwer's degree at a certain point that satisfies Melnikov's non-resonance conditions, then the invariant torus with given frequency persists under small perturbations.
Citation: Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1237-1249. doi: 10.3934/dcdsb.2010.14.1237
[1]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[2]

Shengqing Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4497-4518. doi: 10.3934/dcds.2020188

[3]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[4]

Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162

[5]

Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701

[6]

Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683

[7]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1677-1692. doi: 10.3934/dcds.2016.36.1677

[8]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[9]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[10]

Xiaocai Wang, Xiaofei Cao, Xuqing Liu. On the persistence of lower-dimensional tori in reversible systems with high dimensional degenerate equilibrium under small perturbations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022004

[11]

Luca Biasco, Luigi Chierchia. On the measure of KAM tori in two degrees of freedom. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6635-6648. doi: 10.3934/dcds.2020134

[12]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[13]

Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120

[14]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[15]

Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171

[16]

Paul H. Rabinowitz. On a class of reversible elliptic systems. Networks and Heterogeneous Media, 2012, 7 (4) : 927-939. doi: 10.3934/nhm.2012.7.927

[17]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[18]

Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377

[19]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[20]

Peng Huang. Existence of invariant curves for degenerate almost periodic reversible mappings. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022074

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]