
Previous Article
Bifurcations of a discrete preypredator model with Holling type II functional response
 DCDSB Home
 This Issue

Next Article
Bifurcation of a limit cycle in the acdriven complex GinzburgLandau equation
Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets
1.  Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127994 GSP4 
[1] 
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 2230. doi: 10.3934/era.2011.18.22 
[2] 
Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975990. doi: 10.3934/jimo.2016.12.975 
[3] 
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discretetime linear switching control systems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 35373556. doi: 10.3934/dcdsb.2018277 
[4] 
Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of nonlinear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control & Related Fields, 2019, 0 (0) : 00. doi: 10.3934/mcrf.2020011 
[5] 
Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems  A, 2017, 37 (10) : 53375354. doi: 10.3934/dcds.2017232 
[6] 
Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete & Continuous Dynamical Systems  A, 2018, 38 (8) : 39773991. doi: 10.3934/dcds.2018173 
[7] 
Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems  A, 2018, 38 (8) : 41174132. doi: 10.3934/dcds.2018179 
[8] 
Chen Ling, Liqun Qi. Some results on $l^k$eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381388. doi: 10.3934/naco.2011.1.381 
[9] 
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 447470. doi: 10.3934/dcdsb.2016.21.447 
[10] 
Carsten Burstedde. On the numerical evaluation of fractional Sobolev norms. Communications on Pure & Applied Analysis, 2007, 6 (3) : 587605. doi: 10.3934/cpaa.2007.6.587 
[11] 
Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$operator norms of toy hypocoercive semigroups. Kinetic & Related Models, 2013, 6 (2) : 317372. doi: 10.3934/krm.2013.6.317 
[12] 
Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functionaldifferential equations. Conference Publications, 2003, 2003 (Special) : 147155. doi: 10.3934/proc.2003.2003.147 
[13] 
Kai Zehmisch. The codisc radius capacity. Electronic Research Announcements, 2013, 20: 7796. doi: 10.3934/era.2013.20.77 
[14] 
Giovanni Bellettini, Matteo Novaga, Shokhrukh Yusufovich Kholmatov. Minimizers of anisotropic perimeters with cylindrical norms. Communications on Pure & Applied Analysis, 2017, 16 (4) : 14271454. doi: 10.3934/cpaa.2017068 
[15] 
François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177185. doi: 10.3934/era.2014.21.177 
[16] 
Antonio Giorgilli, Stefano Marmi. Convergence radius in the PoincaréSiegel problem. Discrete & Continuous Dynamical Systems  S, 2010, 3 (4) : 601621. doi: 10.3934/dcdss.2010.3.601 
[17] 
Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129137. doi: 10.3934/amc.2014.8.129 
[18] 
Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz. Morrey spaces norms and criteria for blowup in chemotaxis models. Networks & Heterogeneous Media, 2016, 11 (2) : 239250. doi: 10.3934/nhm.2016.11.239 
[19] 
Haïm Brezis. Remarks on some minimization problems associated with BV norms. Discrete & Continuous Dynamical Systems  A, 2019, 39 (12) : 70137029. doi: 10.3934/dcds.2019242 
[20] 
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete & Continuous Dynamical Systems  B, 2001, 1 (1) : 128. doi: 10.3934/dcdsb.2001.1.1 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]