July  2010, 14(1): 143-158. doi: 10.3934/dcdsb.2010.14.143

Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets


Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127994 GSP-4

Received  October 2008 Revised  February 2010 Published  April 2010

The problem of construction of Barabanov norms for analysis of properties of the joint (generalized) spectral radius of matrix sets has been discussed in a number of publications. In [18, 21] the method of Barabanov norms was the key instrument in disproving the Lagarias-Wang Finiteness Conjecture. The related constructions were essentially based on the study of the geometrical properties of the unit balls of some specific Barabanov norms. In this context the situation when one fails to find among current publications any detailed analysis of the geometrical properties of the unit balls of Barabanov norms looks a bit paradoxical. Partially this is explained by the fact that Barabanov norms are defined nonconstructively, by an implicit procedure. So, even in simplest cases it is very difficult to visualize the shape of their unit balls. The present work may be treated as the first step to make up this deficiency. In the paper an iteration procedure is considered that allows to build numerically Barabanov norms for the irreducible matrix sets and simultaneously to compute the joint spectral radius of these sets.
Citation: Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22


Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975


Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277


Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control & Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011


Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232


Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173


Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179


Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381


Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447


Carsten Burstedde. On the numerical evaluation of fractional Sobolev norms. Communications on Pure & Applied Analysis, 2007, 6 (3) : 587-605. doi: 10.3934/cpaa.2007.6.587


Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$-operator norms of toy hypocoercive semi-groups. Kinetic & Related Models, 2013, 6 (2) : 317-372. doi: 10.3934/krm.2013.6.317


Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147


Kai Zehmisch. The codisc radius capacity. Electronic Research Announcements, 2013, 20: 77-96. doi: 10.3934/era.2013.20.77


Giovanni Bellettini, Matteo Novaga, Shokhrukh Yusufovich Kholmatov. Minimizers of anisotropic perimeters with cylindrical norms. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1427-1454. doi: 10.3934/cpaa.2017068


François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177


Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601


Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129


Torsten Trimborn, Stephan Gerster, Giuseppe Visconti. Spectral methods to study the robustness of residual neural networks with infinite layers. Foundations of Data Science, 2020  doi: 10.3934/fods.2020012


Haïm Brezis. Remarks on some minimization problems associated with BV norms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7013-7029. doi: 10.3934/dcds.2019242


Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz. Morrey spaces norms and criteria for blowup in chemotaxis models. Networks & Heterogeneous Media, 2016, 11 (2) : 239-250. doi: 10.3934/nhm.2016.11.239

2019 Impact Factor: 1.27


  • PDF downloads (29)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]