-
Previous Article
Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure
- DCDS-B Home
- This Issue
-
Next Article
Global exact boundary controllability for first order quasilinear hyperbolic systems
Energy decay rate of a mixed type II and type III thermoelastic system
1. | Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812-2496 |
2. | Departament de Matemàtica Aplicada 2, ETSEIAT–UPC, C. Colom 11, 08222 Terrassa, Barcelona |
[1] |
Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119 |
[2] |
George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations and Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233 |
[3] |
Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007 |
[4] |
Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure and Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011 |
[5] |
Michiko Yuri. Polynomial decay of correlations for intermittent sofic systems. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 445-464. doi: 10.3934/dcds.2008.22.445 |
[6] |
Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059 |
[7] |
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793 |
[8] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036 |
[9] |
Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851 |
[10] |
Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021 |
[11] |
Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721 |
[12] |
Monica Conti, Lorenzo Liverani, Vittorino Pata. Thermoelasticity with antidissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022040 |
[13] |
George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035 |
[14] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[15] |
Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267 |
[16] |
Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713 |
[17] |
Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463 |
[18] |
Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064 |
[19] |
Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249 |
[20] |
Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]