# American Institute of Mathematical Sciences

November  2010, 14(4): 1601-1620. doi: 10.3934/dcdsb.2010.14.1601

## Stabilization of some coupled hyperbolic/parabolic equations

 1 Department of Mathematics & Statistics, Florida International University, Miami, FL 33199, United States

Received  August 2009 Revised  January 2010 Published  August 2010

First, we consider a coupled system consisting of the wave equation and the heat equation in a bounded domain. The coupling involves an operator parametrized by a real number $\mu$ lying in the interval [0,1]. We show that for $0\leq\mu<1$, the associated semigroup is not uniformly stable. Then we propose an explicit non-uniform decay rate. For $\mu=1$, the coupled system reduces to the thermoelasticity equations discussed by Lebeau and Zuazua [23], and subsequently by Albano and Tataru [1]; we show that in this case, the corresponding semigroup is exponentially stable but not analytic. Afterwards, we discuss some extensions of our results. Second, we consider partially clamped Kirchhoff thermoelastic plate without mechanical feedback controls, and we prove that the underlying semigroup is exponentially stable uniformly with respect to the rotational inertia. We use a constructive frequency domain method to prove the stabilization result, and we obtain an explicit decay rate by showing that the real part of the spectrum is uniformly bounded by a negative number that depends on the parameters of the system other than the rotational inertia; our approach is an alternative to the energy method applied by Avalos and Lasiecka [6].
Citation: Louis Tebou. Stabilization of some coupled hyperbolic/parabolic equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1601-1620. doi: 10.3934/dcdsb.2010.14.1601
 [1] Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156 [2] Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations and Control Theory, 2022, 11 (1) : 199-224. doi: 10.3934/eect.2020108 [3] Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119 [4] Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033 [5] Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 [6] Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599 [7] Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383 [8] Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control and Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1 [9] Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021230 [10] Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557 [11] Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003 [12] Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733 [13] Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325 [14] Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 [15] Monia Bel Hadj Salah. The lack of exponential stability for a weakly coupled wave equations through a variable density term. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1339-1354. doi: 10.3934/dcdss.2022090 [16] Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219 [17] Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations and Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1 [18] Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe. Exponential and polynomial stability results for networks of elastic and thermo-elastic rods. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1183-1220. doi: 10.3934/dcdss.2021142 [19] Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274 [20] Margareth S. Alves, Rodrigo N. Monteiro. Stability of non-classical thermoelasticity mixture problems. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4879-4898. doi: 10.3934/cpaa.2020216

2020 Impact Factor: 1.327