-
Previous Article
Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates
- DCDS-B Home
- This Issue
-
Next Article
Symmetrical solutions of backward stochastic Volterra integral equations and their applications
Stochastic Lotka-Volterra system with unbounded distributed delay
1. | School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China, China |
$\dot{x}(t)=\mbox{diag}(x_1(t), \cdots, x_n(t))(r+Ax(t)+B\int_{-\infty}^0x(t+\theta)d\mu(\theta))$
into the corresponding stochastic system
$dx(t)=\mbox{diag}(x_1(t), \cdots, x_n(t))[(r+Ax(t)+B\int_{-\infty}^0x(t+\theta)d\mu(\theta))dt+\beta dw(t)].$
This paper obtains one condition under which the above stochastic system has a global almost surely positive solution and gives the asymptotic pathwise estimation of this solution. This paper also shows that when the noise is sufficiently large, the solution of this stochastic system will converge to zero with probability one. This reveals that the sufficiently large noise may make the population extinct.
[1] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5141-5164. doi: 10.3934/dcds.2021071 |
[2] |
Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012 |
[3] |
Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 |
[4] |
Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171 |
[5] |
Qi Wang. Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3245-3255. doi: 10.3934/cpaa.2020142 |
[6] |
Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290 |
[7] |
Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771 |
[8] |
Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 |
[9] |
Michel Benaïm, Antoine Bourquin, Dang H. Nguyen. Stochastic persistence in degenerate stochastic Lotka-Volterra food chains. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022023 |
[10] |
Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061 |
[11] |
Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300 |
[12] |
Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177 |
[13] |
Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291 |
[14] |
Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069 |
[15] |
Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663 |
[16] |
Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077 |
[17] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[18] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[19] |
Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 |
[20] |
Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]