 Previous Article
 DCDSB Home
 This Issue

Next Article
Stochastic LotkaVolterra system with unbounded distributed delay
Phase portraits, Hopf bifurcations and limit cycles of LeslieGower predatorprey systems with harvesting rates
1.  Department of Mathematics, Ryerson University, Toronto, Ontario, M5B 2K3, Canada, Canada 
[1] 
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of threespecies preypredator system with cooperation among prey species. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020468 
[2] 
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 177203. doi: 10.3934/dcdss.2020344 
[3] 
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 5575. doi: 10.3934/cpaa.2020257 
[4] 
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a twotimescale ecosystem. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020342 
[5] 
YiLong Luo, Yangjun Ma. Low Mach number limit for the compressible inertial QianSheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 921966. doi: 10.3934/dcds.2020304 
[6] 
Helmut Abels, Andreas Marquardt. On a linearized MullinsSekerka/Stokes system for twophase flows. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020467 
[7] 
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rateindependent evolution of sets. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 89119. doi: 10.3934/dcdss.2020304 
[8] 
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020350 
[9] 
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 331351. doi: 10.3934/dcdss.2020325 
[10] 
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185204. doi: 10.3934/jimo.2019106 
[11] 
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449465. doi: 10.3934/cpaa.2020276 
[12] 
Dorothee Knees, Chiara Zanini. Existence of parameterized BVsolutions for rateindependent systems with discontinuous loads. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 121149. doi: 10.3934/dcdss.2020332 
[13] 
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020353 
[14] 
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 813847. doi: 10.3934/dcds.2020301 
[15] 
Craig Cowan, Abdolrahman Razani. Singular solutions of a LaneEmden system. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 621656. doi: 10.3934/dcds.2020291 
[16] 
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reactiondiffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020321 
[17] 
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 
[18] 
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 
[19] 
Adel M. AlMahdi, Mohammad M. AlGharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389404. doi: 10.3934/cpaa.2020273 
[20] 
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020357 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]