\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two-sided error estimates for the stochastic theta method

Abstract Related Papers Cited by
  • Two-sided error estimates are derived for the strong error of convergence of the stochastic theta method. The main result is based on two ingredients. The first one shows how the theory of convergence can be embedded into standard concepts of consistency, stability and convergence by an appropriate choice of norms and function spaces. The second one is a suitable stochastic generalization of Spijker's norm (1968) that is known to lead to two-sided error estimates for deterministic one-step methods. We show that the stochastic theta method is bistable with respect to this norm and that well-known results on the optimal $\mathcal{O}(\sqrt{h})$ order of convergence follow from this property in a natural way.
    Mathematics Subject Classification: Primary 65C20, 65C30, 65L20 ; Secondary 65L70, 65J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return