
Previous Article
Remarks on a paper of Kotani concerning generalized reflectionless Schrödinger potentials
 DCDSB Home
 This Issue

Next Article
Zero, one and twoswitch models of gene regulation
Taylor expansions of solutions of stochastic partial differential equations
1.  Faculty of Mathematics, Bielefeld University, Universitätsstr. 25, 33501 Bielefeld, Germany 
[1] 
Rainer Buckdahn, Ingo Bulla, Jin Ma. Pathwise Taylor expansions for Itô random fields. Mathematical Control & Related Fields, 2011, 1 (4) : 437468. doi: 10.3934/mcrf.2011.1.437 
[2] 
Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 31153162. doi: 10.3934/dcdsb.2016090 
[3] 
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems  A, 2007, 18 (2&3) : 295313. doi: 10.3934/dcds.2007.18.295 
[4] 
Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 52035219. doi: 10.3934/dcds.2015.35.5203 
[5] 
Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems  A, 2017, 37 (10) : 51055125. doi: 10.3934/dcds.2017221 
[6] 
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341369. doi: 10.3934/nhm.2019014 
[7] 
Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123137. doi: 10.3934/jgm.2019006 
[8] 
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems  B, 2019, 24 (10) : 53375354. doi: 10.3934/dcdsb.2019061 
[9] 
Min Yang, Guanggan Chen. Finite dimensional reducing and smooth approximating for a class of stochastic partial differential equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019240 
[10] 
Djédjé Sylvain Zézé, Michel PotierFerry, Yannick Tampango. Multipoint Taylor series to solve differential equations. Discrete & Continuous Dynamical Systems  S, 2019, 12 (6) : 17911806. doi: 10.3934/dcdss.2019118 
[11] 
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 473493. doi: 10.3934/dcdsb.2010.14.473 
[12] 
Shaokuan Chen, Shanjian Tang. Semilinear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401434. doi: 10.3934/mcrf.2015.5.401 
[13] 
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévytype noises. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 32693299. doi: 10.3934/dcdsb.2016097 
[14] 
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highestorder derivatives. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 39153934. doi: 10.3934/dcdsb.2018117 
[15] 
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predatorprey equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 117139. doi: 10.3934/dcdsb.2019175 
[16] 
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of pth mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2020, 25 (3) : 11411158. doi: 10.3934/dcdsb.2019213 
[17] 
Herbert Koch. Partial differential equations with nonEuclidean geometries. Discrete & Continuous Dynamical Systems  S, 2008, 1 (3) : 481504. doi: 10.3934/dcdss.2008.1.481 
[18] 
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems  A, 2006, 15 (3) : 703723. doi: 10.3934/dcds.2006.15.703 
[19] 
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 10531065. doi: 10.3934/cpaa.2009.8.1053 
[20] 
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (8) : 31273144. doi: 10.3934/dcdsb.2017167 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]