September  2010, 14(2): 699-717. doi: 10.3934/dcdsb.2010.14.699

Dynamics of the fuzzy logistic family

1. 

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain, Spain, Spain

Received  March 2009 Revised  September 2009 Published  June 2010

In this work, we study the global dynamics of the fuzzy quadratic family $F_a(x)=G_a(x,x)$, where $a \in\mathbb{R}$, $G_a(x,y)=ax(1-y)$, and $x, y \in E^1$ are elements of the set of fuzzy real numbers. We analyze the set of fixed points of $F_a$ and the behavior of each fuzzy number $x \in E^1$ under iteration by $F_a$, with $a>1$. For $0 < a \leq 1$, we study some stability properties for the fixed points of $F_a$ in $[\chi_{\{0\}}, \chi_{\{1\}}]$. We observe different types of attractors, including chaos. We show that our formulation includes and extends classical results for the real quadratic family, since the set of crisp fuzzy numbers is invariant. Finally, we present some applications and physical considerations in relation with the logistic family.
Citation: Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699
[1]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[2]

Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[3]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[4]

Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540

[5]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[6]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[7]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[8]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[9]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[10]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[11]

Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1947-1955. doi: 10.3934/dcdss.2020152

[12]

Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094

[13]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[14]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[15]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure and Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[16]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[17]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[18]

Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024

[19]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial and Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[20]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (7)

[Back to Top]