
Previous Article
A gradient flow scheme for nonlinear fourth order equations
 DCDSB Home
 This Issue

Next Article
Chaos and quasiperiodicity in diffeomorphisms of the solid torus
Evaporation law in kinetic gravitational systems described by simplified Landau models
1.  IRMAR, Université Rennes 1, Rennes, 35700, France, France, France 
2.  IRSAMC, Université Paul Sabatier, Toulouse, 31400, France 
[1] 
Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333344. doi: 10.3934/krm.2011.4.333 
[2] 
Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete & Continuous Dynamical Systems  A, 2005, 12 (4) : 569594. doi: 10.3934/dcds.2005.12.569 
[3] 
SeungYeal Ha, Jinyeong Park, Xiongtao Zhang. A global wellposedness and asymptotic dynamics of the kinetic Winfree equation. Discrete & Continuous Dynamical Systems  B, 2020, 25 (4) : 13171344. doi: 10.3934/dcdsb.2019229 
[4] 
Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic & Related Models, 2019, 12 (6) : 12731296. doi: 10.3934/krm.2019049 
[5] 
Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255279. doi: 10.3934/krm.2010.3.255 
[6] 
Charles Nguyen, Stephen Pankavich. A onedimensional kinetic model of plasma dynamics with a transport field. Evolution Equations & Control Theory, 2014, 3 (4) : 681698. doi: 10.3934/eect.2014.3.681 
[7] 
Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional GinzburgLandau equation with multiplicative noise. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 575590. doi: 10.3934/dcdsb.2016.21.575 
[8] 
Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex GinzburgLandau equation. Discrete & Continuous Dynamical Systems  A, 2017, 37 (5) : 25392564. doi: 10.3934/dcds.2017109 
[9] 
Feng Zhou, Chunyou Sun. Dynamics for the complex GinzburgLandau equation on noncylindrical domains I: The diffeomorphism case. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 37673792. doi: 10.3934/dcdsb.2016120 
[10] 
D. Blömker, S. MaierPaape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete & Continuous Dynamical Systems  B, 2001, 1 (4) : 527541. doi: 10.3934/dcdsb.2001.1.527 
[11] 
Rong Yang, Li Chen. Meanfield limit for a collisionavoiding flocking system and the timeasymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381400. doi: 10.3934/krm.2014.7.381 
[12] 
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591617. doi: 10.3934/krm.2008.1.591 
[13] 
Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete & Continuous Dynamical Systems  S, 2010, 3 (4) : 533544. doi: 10.3934/dcdss.2010.3.533 
[14] 
Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501528. doi: 10.3934/krm.2010.3.501 
[15] 
Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109119. doi: 10.3934/krm.2014.7.109 
[16] 
Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 18951916. doi: 10.3934/cpaa.2009.8.1895 
[17] 
Hao Zhang, Kai Jiang, Pingwen Zhang. Dynamic transitions for LandauBrazovskii model. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 607627. doi: 10.3934/dcdsb.2014.19.607 
[18] 
Mickaël Dos Santos, Oleksandr Misiats. GinzburgLandau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715753. doi: 10.3934/nhm.2011.6.715 
[19] 
KoShin Chen, Peter Sternberg. Dynamics of GinzburgLandau and GrossPitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 19051931. doi: 10.3934/dcds.2014.34.1905 
[20] 
Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955967. doi: 10.3934/krm.2013.6.955 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]