October  2010, 14(3): 935-959. doi: 10.3934/dcdsb.2010.14.935

A gradient flow scheme for nonlinear fourth order equations

1. 

Institut für Analysis und Scientific Computing, Technische Universität Wien, 1040 Wien, Austria, Austria

2. 

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Received  August 2009 Revised  March 2010 Published  July 2010

We propose a method for numerical integration of Wasserstein gradient flows based on the classical minimizing movement scheme. In each time step, the discrete approximation is obtained as the solution of a constrained quadratic minimization problem on a finite-dimensional function space. Our method is applied to the nonlinear fourth-order Derrida-Lebowitz-Speer-Spohn equation, which arises in quantum semiconductor theory. We prove well-posedness of the scheme and derive a priori estimates on the discrete solution. Furthermore, we present numerical results which indicate second-order convergence and unconditional stability of our scheme. Finally, we compare these results to those obtained from different semi- and fully implicit finite difference discretizations.
Citation: Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935
[1]

Matthias Erbar, Dominik Forkert, Jan Maas, Delio Mugnolo. Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous Media, 2022, 17 (5) : 687-717. doi: 10.3934/nhm.2022023

[2]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[3]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[4]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[5]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[6]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic and Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[7]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[8]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[9]

Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019

[10]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[11]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations and Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[12]

Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242

[13]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093

[14]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[15]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[16]

Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157

[17]

Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4615-4635. doi: 10.3934/dcds.2022066

[18]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[19]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[20]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial and Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (181)
  • HTML views (0)
  • Cited by (21)

[Back to Top]