October  2010, 14(3): 961-976. doi: 10.3934/dcdsb.2010.14.961

Period increment cascades in a discontinuous map with square-root singularity

1. 

Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur-721302, West Bengal, India

2. 

Department of Physical Sciences, Indian Institute of Science Education and Research, Mohanpur-741252, Nadia, West Bengal, India

Received  August 2009 Revised  April 2010 Published  July 2010

We consider a discontinuous map with square-root singularity, which is relevant to many physical systems. Such maps occur in modeling grazing-sliding bifurcations in switching dynamical systems, or if the Poincaré plane coincides with the switching plane. It is shown that there are notable differences in the bifurcation scenarios between this type of discontinuous map and a continuous map with square-root singularity. We determine the bifurcation structures and the scaling constant analytically. A different kind of period increment is observed, and the possibility of breakdown of period increment cascade is detected. Finally, we show that a system of piecewise smooth ordinary differential equations can exhibit the same type of bifurcation behavior.
Citation: Partha Sharathi Dutta, Soumitro Banerjee. Period increment cascades in a discontinuous map with square-root singularity. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 961-976. doi: 10.3934/dcdsb.2010.14.961
[1]

Laura Gardini, Roya Makrooni, Iryna Sushko. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 701-729. doi: 10.3934/dcdsb.2018039

[2]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[3]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[4]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[5]

Vincenzo Ambrosio, Giovanni Molica Bisci, Dušan Repovš. Nonlinear equations involving the square root of the Laplacian. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 151-170. doi: 10.3934/dcdss.2019011

[6]

Theresa Lange, Wilhelm Stannat. Mean field limit of Ensemble Square Root filters - discrete and continuous time. Foundations of Data Science, 2021, 3 (3) : 563-588. doi: 10.3934/fods.2021003

[7]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[8]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[9]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[10]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[11]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507

[12]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[13]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[14]

Jianfeng Huang, Yulin Zhao. Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2861-2883. doi: 10.3934/dcds.2013.33.2861

[15]

Jianfei Cheng, Xiao Wang, Yicheng Liu. Collision-avoidance and flocking in the Cucker–Smale-type model with a discontinuous controller. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1733-1748. doi: 10.3934/dcdss.2021169

[16]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[17]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[18]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[19]

Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555

[20]

Valeria Banica, Luis Vega. Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb S^2$. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1317-1329. doi: 10.3934/cpaa.2018064

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]