June  2011, 15(4): 1045-1064. doi: 10.3934/dcdsb.2011.15.1045

Boundary element approach for the slow viscous migration of spherical bubbles

1. 

LadHyX. Ecole Polytechnique, 91128 Palaiseau, France

Received  May 2010 Published  March 2011

This paper examines the slow viscous migration of a collection of $N\geq 1$ spherical bubbles immersed in a bounded Newtonian liquid under the action of prescribed uniform gravity field and/or arbitrary ambient Stokes flow. The liquid domain is either open or closed with fixed boundary(ies) where the ambient Stokes flow vanishes. The incurred translational velocity of each bubble is obtained by resorting to a well-posed boundary formulation which requires to invert $3N$ boundary-integral equations. Depending upon the selected Green tensor, these integral equations holds on the cluster's surface plus the boundaries or solely on the cluster's surface. The advocated numerical strategy resorts to quadratic triangular curvilinear boundary elements on each encoutered surface and enables one to accurately compute at a reasonable cpu time cost each bubble velocity. A special attention is paid, both theoretically and numerically, to the case of $N-$bubble cluster located near a solid and motionless plane wall with numerical results given and discussed for a few clusters subject to gravity effects and ambient linear or quadratic shear flows.
Citation: Antoine Sellier. Boundary element approach for the slow viscous migration of spherical bubbles. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1045-1064. doi: 10.3934/dcdsb.2011.15.1045
References:
[1]

N. O. Young, J. S. Goldstein and M. J. Block, The motion of bubbles in a vertical temperature gradient,, J. Fluid Mech., 6 (1959), 350.  doi: doi:10.1017/S0022112059000684.  Google Scholar

[2]

R. S. Subramanian, The Stokes force on a droplet in an unbounded fluid medium due to capillary effects,, J. Fluid Mech., 153 (1985), 389.  doi: doi:10.1017/S0022112085001306.  Google Scholar

[3]

A. Sellier, On the capillary motion of arbitrary clusters of spherical bubbles. Part 1. General theory,, J. Fluid Mech., 197 (2004), 391.  doi: doi:10.1017/S0022112004008146.  Google Scholar

[4]

G. Hetsroni, E. Wacholder and S. Haber, The hydrodynamic resistance of a fluid sphere submerged in Stokes flows,, Z. Angew. Math. Mech. \textbf{15} (1971), 15 (1971), 45.  doi: doi:10.1002/zamm.19710510105.  Google Scholar

[5]

A. Sellier, Slow viscous migration of bubbles near a plane solid wall under a gravity and/or an external flow field,, Far East J. Appl. Math., 23 (2006), 349.   Google Scholar

[6]

J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,'', Martinus Nijhoff, (1973).   Google Scholar

[7]

S. Kim and S. J. Karrila, "Microhydrodynamics: Principles and Selected Applications,'', Applications, (1991).   Google Scholar

[8]

C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow,'', Cambridge University Press, (1992).  doi: doi:10.1017/CBO9780511624124.  Google Scholar

[9]

C. A. Brebbia, J. C. L. Telles and L. C. Wrobel, "Boundary Element Techniques,'', Springer-Verlag, (1984).   Google Scholar

[10]

D. E. Beskos, "Introduction to Boundary Element Methods,'', In Computational Methods in Mechanics (ed. D. E. Beskos). Elsevier Science Publishers, (1987).   Google Scholar

[11]

M. Bonnet, "Boundary Integral Equation Methods for Solids and Fluids,'', John Wiley & Sons Ltd, (1999).   Google Scholar

[12]

J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,, Proc. Camb. Phil. Soc., 70 (1971), 303.  doi: doi:10.1017/S0305004100049902.  Google Scholar

show all references

References:
[1]

N. O. Young, J. S. Goldstein and M. J. Block, The motion of bubbles in a vertical temperature gradient,, J. Fluid Mech., 6 (1959), 350.  doi: doi:10.1017/S0022112059000684.  Google Scholar

[2]

R. S. Subramanian, The Stokes force on a droplet in an unbounded fluid medium due to capillary effects,, J. Fluid Mech., 153 (1985), 389.  doi: doi:10.1017/S0022112085001306.  Google Scholar

[3]

A. Sellier, On the capillary motion of arbitrary clusters of spherical bubbles. Part 1. General theory,, J. Fluid Mech., 197 (2004), 391.  doi: doi:10.1017/S0022112004008146.  Google Scholar

[4]

G. Hetsroni, E. Wacholder and S. Haber, The hydrodynamic resistance of a fluid sphere submerged in Stokes flows,, Z. Angew. Math. Mech. \textbf{15} (1971), 15 (1971), 45.  doi: doi:10.1002/zamm.19710510105.  Google Scholar

[5]

A. Sellier, Slow viscous migration of bubbles near a plane solid wall under a gravity and/or an external flow field,, Far East J. Appl. Math., 23 (2006), 349.   Google Scholar

[6]

J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,'', Martinus Nijhoff, (1973).   Google Scholar

[7]

S. Kim and S. J. Karrila, "Microhydrodynamics: Principles and Selected Applications,'', Applications, (1991).   Google Scholar

[8]

C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow,'', Cambridge University Press, (1992).  doi: doi:10.1017/CBO9780511624124.  Google Scholar

[9]

C. A. Brebbia, J. C. L. Telles and L. C. Wrobel, "Boundary Element Techniques,'', Springer-Verlag, (1984).   Google Scholar

[10]

D. E. Beskos, "Introduction to Boundary Element Methods,'', In Computational Methods in Mechanics (ed. D. E. Beskos). Elsevier Science Publishers, (1987).   Google Scholar

[11]

M. Bonnet, "Boundary Integral Equation Methods for Solids and Fluids,'', John Wiley & Sons Ltd, (1999).   Google Scholar

[12]

J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,, Proc. Camb. Phil. Soc., 70 (1971), 303.  doi: doi:10.1017/S0305004100049902.  Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[11]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]