June  2011, 15(4): 1045-1064. doi: 10.3934/dcdsb.2011.15.1045

Boundary element approach for the slow viscous migration of spherical bubbles

1. 

LadHyX. Ecole Polytechnique, 91128 Palaiseau, France

Received  May 2010 Published  March 2011

This paper examines the slow viscous migration of a collection of $N\geq 1$ spherical bubbles immersed in a bounded Newtonian liquid under the action of prescribed uniform gravity field and/or arbitrary ambient Stokes flow. The liquid domain is either open or closed with fixed boundary(ies) where the ambient Stokes flow vanishes. The incurred translational velocity of each bubble is obtained by resorting to a well-posed boundary formulation which requires to invert $3N$ boundary-integral equations. Depending upon the selected Green tensor, these integral equations holds on the cluster's surface plus the boundaries or solely on the cluster's surface. The advocated numerical strategy resorts to quadratic triangular curvilinear boundary elements on each encoutered surface and enables one to accurately compute at a reasonable cpu time cost each bubble velocity. A special attention is paid, both theoretically and numerically, to the case of $N-$bubble cluster located near a solid and motionless plane wall with numerical results given and discussed for a few clusters subject to gravity effects and ambient linear or quadratic shear flows.
Citation: Antoine Sellier. Boundary element approach for the slow viscous migration of spherical bubbles. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1045-1064. doi: 10.3934/dcdsb.2011.15.1045
References:
[1]

N. O. Young, J. S. Goldstein and M. J. Block, The motion of bubbles in a vertical temperature gradient,, J. Fluid Mech., 6 (1959), 350. doi: doi:10.1017/S0022112059000684. Google Scholar

[2]

R. S. Subramanian, The Stokes force on a droplet in an unbounded fluid medium due to capillary effects,, J. Fluid Mech., 153 (1985), 389. doi: doi:10.1017/S0022112085001306. Google Scholar

[3]

A. Sellier, On the capillary motion of arbitrary clusters of spherical bubbles. Part 1. General theory,, J. Fluid Mech., 197 (2004), 391. doi: doi:10.1017/S0022112004008146. Google Scholar

[4]

G. Hetsroni, E. Wacholder and S. Haber, The hydrodynamic resistance of a fluid sphere submerged in Stokes flows,, Z. Angew. Math. Mech. \textbf{15} (1971), 15 (1971), 45. doi: doi:10.1002/zamm.19710510105. Google Scholar

[5]

A. Sellier, Slow viscous migration of bubbles near a plane solid wall under a gravity and/or an external flow field,, Far East J. Appl. Math., 23 (2006), 349. Google Scholar

[6]

J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,'', Martinus Nijhoff, (1973). Google Scholar

[7]

S. Kim and S. J. Karrila, "Microhydrodynamics: Principles and Selected Applications,'', Applications, (1991). Google Scholar

[8]

C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow,'', Cambridge University Press, (1992). doi: doi:10.1017/CBO9780511624124. Google Scholar

[9]

C. A. Brebbia, J. C. L. Telles and L. C. Wrobel, "Boundary Element Techniques,'', Springer-Verlag, (1984). Google Scholar

[10]

D. E. Beskos, "Introduction to Boundary Element Methods,'', In Computational Methods in Mechanics (ed. D. E. Beskos). Elsevier Science Publishers, (1987). Google Scholar

[11]

M. Bonnet, "Boundary Integral Equation Methods for Solids and Fluids,'', John Wiley & Sons Ltd, (1999). Google Scholar

[12]

J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,, Proc. Camb. Phil. Soc., 70 (1971), 303. doi: doi:10.1017/S0305004100049902. Google Scholar

show all references

References:
[1]

N. O. Young, J. S. Goldstein and M. J. Block, The motion of bubbles in a vertical temperature gradient,, J. Fluid Mech., 6 (1959), 350. doi: doi:10.1017/S0022112059000684. Google Scholar

[2]

R. S. Subramanian, The Stokes force on a droplet in an unbounded fluid medium due to capillary effects,, J. Fluid Mech., 153 (1985), 389. doi: doi:10.1017/S0022112085001306. Google Scholar

[3]

A. Sellier, On the capillary motion of arbitrary clusters of spherical bubbles. Part 1. General theory,, J. Fluid Mech., 197 (2004), 391. doi: doi:10.1017/S0022112004008146. Google Scholar

[4]

G. Hetsroni, E. Wacholder and S. Haber, The hydrodynamic resistance of a fluid sphere submerged in Stokes flows,, Z. Angew. Math. Mech. \textbf{15} (1971), 15 (1971), 45. doi: doi:10.1002/zamm.19710510105. Google Scholar

[5]

A. Sellier, Slow viscous migration of bubbles near a plane solid wall under a gravity and/or an external flow field,, Far East J. Appl. Math., 23 (2006), 349. Google Scholar

[6]

J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,'', Martinus Nijhoff, (1973). Google Scholar

[7]

S. Kim and S. J. Karrila, "Microhydrodynamics: Principles and Selected Applications,'', Applications, (1991). Google Scholar

[8]

C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow,'', Cambridge University Press, (1992). doi: doi:10.1017/CBO9780511624124. Google Scholar

[9]

C. A. Brebbia, J. C. L. Telles and L. C. Wrobel, "Boundary Element Techniques,'', Springer-Verlag, (1984). Google Scholar

[10]

D. E. Beskos, "Introduction to Boundary Element Methods,'', In Computational Methods in Mechanics (ed. D. E. Beskos). Elsevier Science Publishers, (1987). Google Scholar

[11]

M. Bonnet, "Boundary Integral Equation Methods for Solids and Fluids,'', John Wiley & Sons Ltd, (1999). Google Scholar

[12]

J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,, Proc. Camb. Phil. Soc., 70 (1971), 303. doi: doi:10.1017/S0305004100049902. Google Scholar

[1]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[2]

Liping Wang, Chunyi Zhao. Solutions with clustered bubbles and a boundary layer of an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2333-2357. doi: 10.3934/dcds.2014.34.2333

[3]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[4]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[5]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[6]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[7]

Hassib Selmi, Lassaad Elasmi, Giovanni Ghigliotti, Chaouqi Misbah. Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1065-1076. doi: 10.3934/dcdsb.2011.15.1065

[8]

G. C. Yang, K. Q. Lan. Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2465-2495. doi: 10.3934/cpaa.2013.12.2465

[9]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[10]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[11]

Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065

[12]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[13]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[14]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[15]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[18]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[19]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[20]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems & Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]