Advanced Search
Article Contents
Article Contents

Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow

Abstract Related Papers Cited by
  • Two dimensional numerical simulations of sets of vesicles in a Poiseuille flow are presented. Vesicles are a simple model to describe the dynamics of red cells in blood flow. At the scale of vesicles, the hydrodynamics is well described by the Stokes equation, whose linearity allows the use of Green's functions via the boundary integral method. This is coupled with the fast multipole method to acheive optimal scaling with respect to the number of discretization points. Results are presented for sets of different number of vesicles, showing their spatial organization. Vesicles assume a parachute-like shape and align one to the other in the centre of the parabolic profile. The relative distances depend on the total number of vesicles and on the position in the set.
    Mathematics Subject Classification: Primary: 41A58, 65Z05; Secondary: 74F10, 76D07.


    \begin{equation} \\ \end{equation}
  • [1]

    D. Barthès-Biesel and J. M. Rallison, The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech., 113 (1981), 251-267.doi: doi:10.1017/S0022112081003480.


    C. D. Eggleton and A. S. Popel, Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids, 10 (1998), 1834-1845.doi: doi:10.1063/1.869703.


    G. Ghigliotti, T. Biben and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, J. Fluid Mech., 653 (2010), 489-518.doi: doi:10.1017/S0022112010000431.


    L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comp. Phys., 73 (1987), 325-348.doi: doi:10.1016/0021-9991(87)90140-9.


    L. Greengard and V. Rokhlin, "On the Effficient Implementation of the Fast Multipole Algorithm," Technical report, Yale University, Department of Computer Science, 1988.


    N. A. Gumerov and R. Duraiswami, Fast multipole method for the biharmonic equation in three dimensions, J. Comp. Phys., 215 (2006), 363-383.doi: doi:10.1016/j.jcp.2005.10.029.


    W. Helfrich, Elastic properties of lipid bilayers:l theory and possible experiments, Z. Naturforschung, 28 (1973), 693-703.


    B. Kaoui, G. Biros and C. Misbah, Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys. Rev. Lett., 103 (2009), 188101.doi: doi:10.1103/PhysRevLett.103.188101.


    B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah and W. Zimmermann, Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow, Phys. Rev. E, 77 (2008), 021903.doi: doi:10.1103/PhysRevE.77.021903.


    S. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech., 120 (1982), 27-47.doi: doi:10.1017/S0022112082002651.


    M. Kraus, W. Wintz, U. Seifert and R. Lipowsky, Fluid vesicles in shear flow, Phys. Rev. Lett., 77 (1996), 3685-3688.doi: doi:10.1103/PhysRevLett.77.3685.


    J. L. McWhirter, H. Noguchi and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, PNAS, 106 (2009), 6039-6043.doi: doi:10.1073/pnas.0811484106.


    N. Nishimura, Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 55 (2002), 299-324.doi: doi:10.1115/1.1482087.


    C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow," Cambridge University Press, Cambridge, UK, 1992.doi: doi:10.1017/CBO9780511624124.


    C. Pozrikidis, Interfacial dynamics for stokes flow, J. Comp. Phys., 169 (2001), 250-301.doi: doi:10.1006/jcph.2000.6582.


    C. Pozrikidis, "Modeling and Simulation of Capsules and Biological Cells," CRC Press, 2003.doi: doi:10.1201/9780203503959.


    E. Sackmann, Physical basis of self-organization and functions of membranes: Physics of vesicles, chapter 5, pages 213-302. Elsevier Science B.V., 1995.

  • 加载中

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint