Citation: |
[1] |
G. Auchmuty and J. C. Alexander, $L^2$ well-posedness of planar div-curl systems, Arch. Ration. Mech. Anal., 160 (2001), 91-134.doi: doi:10.1007/s002050100156. |
[2] |
P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Partial Differential Equations, 15 (1990), 737-756.doi: doi:10.1080/03605309908820706. |
[3] |
E. DiBenedetto, "Degenerate Parabolic Equations," Springer-Verlag, New York, 1993. |
[4] |
A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity, SIAM J. Math. Anal., 40 (2008), 1201-1245.doi: doi:10.1137/070708202. |
[5] |
G. Gilardi and U. Stefanelli, Existence for a doubly nonlinear Volterra equation, J. Math. Anal. Appl., 333, (2007), 839-862.doi: doi:10.1016/j.jmaa.2006.11.050. |
[6] |
M. E. Gurtin, A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin, J. Mech. Phys. Solids, 52 (2004), 2545-2568.doi: doi:10.1016/j.jmps.2004.04.010. |
[7] |
M. E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations, J. Mech. Phys. Solids, 53 (2005), 1624-1649.doi: doi:10.1016/j.jmps.2004.12.008. |
[8] |
S. Kesavan, On Poincaré's and J. L. Lions' lemmas, C. R. Math. Acad. Sci. Paris, 340 (2005), 27-30. |
[9] |
J.-L. Lions, "Quelques Méthodes de Résolution des problèmes aux Limites Non Linéaires," Dunod, 1969. |
[10] |
B. Daya Reddy, F. Ebobisse and A. McBride, Well-posedness of a model of strain gradient plasticity for plastically irrotational materials, International Journal of Plasticity, 24 (2008), 55-73.doi: doi:10.1016/j.ijplas.2007.01.013. |
[11] |
G. Savaré, Regularity results for elliptic equations in $\textrmL$ipschitz domains, J. Funct. Anal., 152 (1998), 176-201.doi: doi:10.1006/jfan.1997.3158. |
[12] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications. II/A. Linear Monotone Operators," Springer-Verlag, New York, 1990. |